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Anti-predator strategies can influence trade-offs governing other activities important to fitness. Crypsis, for example, 
might make conspicuous sexual display especially costly, whereas aposematism might reduce or remove such costs. 
We tested for correlates of anti-predator strategy in Oophaga pumilio, a polytypic poison frog with morphs spanning 
the crypsis–aposematism continuum. In the wild, males of visually conspicuous morphs display from conspicuous 
perches and behave as if they perceive predation risk to be low. We thus predicted that, given a choice of ambient light 
microhabitats, these males would use high ambient light conditions the most and be most likely to perch in high-light 
conditions. We found no evidence that differently colored male O. pumilio preferentially used bright microhabitats or 
that ambient light influenced perching in a morph-specific manner. Independent of light conditions, males from the 
most conspicuous population perched the least, but the most conspicuous individuals from a polymorphic population 
perched the most. These patterns suggest that preferences do not necessarily underlie among-morph differences 
observed in the wild. This could be explained, and remain consistent with theory, if risk aversion is shaped, in part, 
by experience.
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INTRODUCTION

The intensity and direction of selection on any 
one trait often depend in complex and/or context-
dependent ways on the expression of other traits in 
the same individual, driving correlated selection 
on and co-evolution of these traits (Sinervo & 
Svensson, 2002; Pigliucci & Preston, 2004; Bond, 
2007). Morphological traits that enhance crypsis, for 
example, might function to deter predators best (or 
only) when accompanied by stereotyped behaviour 
(e.g. ‘shaking’ of leaf/stick mimics; Skelhorn et al., 
2010) or, more commonly, reduced movement (Ruxton 
et al., 2004; Cooper et al., 2008; Ioannou & Krause, 
2009). The suite of selective pressures shaping anti-
predator morphology that requires avoiding attention 
can further stem from trade-offs governing potentially 
conspicuous behaviours, such as foraging and sexual 
display (Endler, 1980; Ryan et al., 1982). At another 
extreme is aposematism, a phenomenon in which 

predators are deterred by the combination of defenses 
(e.g. morphological, chemical) and conspicuous and/
or memorable traits that advertise unprofitability 
(Ruxton et al., 2007). This anti-predator strategy might 
instead weaken any selection imposed by predation 
costs of finding and procuring food and mates (Lima & 
Dill, 1990; Speed et al., 2010; Rudh et al., 2012). These 
cascading trade-offs influence processes as diverse as 
individual risk assessment (Briffa & Twyman, 2011), 
diversification and speciation (Santos et al., 2014; 
Arbuckle & Speed, 2015), and interactions among 
trophic levels (Ripple & Beschta, 2004).

Understanding whether and how selection acts 
in concert on anti-predator strategies and other 
components of fitness is especially tractable when 
individuals, populations or closely related species 
fall at different places on the continuum of crypsis 
to aposematism (Speed et al., 2010; Tarvin et al., 
2017). Visual conspicuousness and anti-predator 
chemical defenses vary considerably both within 
and among species of poison frogs (Dendrobatidae), 
with putative crypsis and putative aposematism both 
evolving multiple times (Caldwell, 1996; Summers 
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& Clough, 2001; Santos & Canatella, 2011; Rojas, 
2017). A role for colour in deterring attack by local 
predators is supported, if not unambiguously, by 
experimental evidence (reviewed by Rojas, 2017). 
Colour has also been implicated in assortative mate 
choice (Summers et al., 1999; Maan & Cummings, 
2008; Twomey et al., 2014; Gade et al., 2016; Yang 
et al., 2016, 2019) and male–male communication 
(Crothers & Cummings, 2013; Yang et al., 2018). The 
features of colour associated with an advantage in 
intraspecific contexts may also attract the attention 
of predators (Maan & Cummings, 2008; Crothers & 
Cummings, 2013; Dreher et al., 2015), but whether 
and the extent to which these multiple effects result 
in a trade-off presumably depends on where the 
individual/population/species falls on the crypsis to 
aposematism spectrum.

Measuring the fitness consequences of relationships 
among visual signals, anti-predator defense and 
the behaviours they are hypothesized to co-evolve/
be co-expressed with (e.g. foraging, courtship) is 
challenging in poison frogs because observations 
of predation or even predator attacks on frogs are 
vanishingly rare (reviewed by Santos & Canatella, 
2011; Rojas, 2017). Modelling predator visual systems 
can suggest which phenotypes might attract or avoid 
notice (Maan & Cummings, 2012; Willink et al., 
2013), and artificial frogs (e.g. clay) can be used to 
test the relationship between coloration/patterning 
and attack (at least by the subset of predators that 
respond to these models; Paluh et al., 2014; Rojas, 
2017). Another way to test the hypothesis that diverse 
coloration and defense in polytypic species reflect 
different anti-predator strategies (with widespread 
correlates) is to test the prediction that putatively 
cryptic populations ought to behave in a way that 
avoids predator attention and putatively aposematic 
ones ought to behave as if they are insensitive to this 
risk (Rudh et al., 2011, 2012; Willink et al., 2014a; 
Dugas et al., 2015).

We assessed experimentally whether colour is 
associated with microhabitat preference and a 
conspicuous behaviour in colour morphs of the 
polytypic strawberry poison frog, Oophaga pumilio 
(Schmidt, 1857). Native to Central America, O. pumilio 
displays a relatively conserved red body with blue/
black limb phenotype across mainland populations 
(Hagemann & Pröhl, 2007). However, colour morphs 
spanning the visual spectrum exist along a putative 
crypsis–aposematism axis in Panama’s Bocas del 
Toro archipelago, with each island or geographical 
region typically home to a single morph (Siddiqi et al., 
2004; Rudh, 2013). Chemical defenses are similarly 
variable and, overall, are positively associated with 
visual conspicuousness (Saporito et al., 2006; Maan 

& Cummings, 2012). Among-population comparisons 
suggest that males in more conspicuous/well-defended 
populations spend more time foraging (Prӧhl & 
Ostrowski, 2011) and are more aggressive and 
explorative than their cryptic counterparts (Rudh 
et al., 2013). Male O. pumilio defend small territories, 
in which they choose perches from which to call to and 
search visually for females (Pröhl & Hödl, 1999; Pröhl, 
2003; Meuche et al., 2013), an activity that presumably 
also carries the risk of attracting predators (Ryan 
et al., 1982).

In their natural habitats, male O. pumilio from 
conspicuous populations use more visually conspicuous 
perches (Rudh et al., 2011; for similar patterns in the 
congener Oophaga granulifera, see Willink et al., 
2013, 2014a). This finding is potentially important to 
understanding how correlated selection has shaped 
the evolution of these phenotypes and perhaps even 
to how this suite of traits might shape reproductive 
isolation among phenotypically distinct lineages (Rudh 
et al., 2011; Willink et al., 2013, 2014a). A male’s perch 
in the wild, however, is likely to reflect a compromise 
between preference, among-site differences in perch 
availability, competition with other males, and other 
biotic and abiotic costs associated with perches (e.g. 
thermal stress) (Rudh et al., 2011; Dugas et al., 2015). 
Laboratory assays can reveal mate preferences not 
manifested in choice in the wild (Yang et al., 2019); 
likewise, assays of display site preference are crucial 
to testing for co-evolved colour and light habitat 
preference.

We a l lowed O.  pumil io  males  f rom three 
monomorphic populations and three morphs 
from one polymorphic site to choose between 
microhabitats with different levels of ambient light 
availability. Although both the intensity of ambient 
light and its spectral composition (i.e. colour) 
vary in ways that influence frog conspicuousness 
in natural habitats (Endler, 1990, 1993), we 
manipulated intensity independently of colour 
because: (1) more intense ambient light should 
increase the conspicuousness of all O.  pumilio 
morphs in a similar way (Maan & Cummings, 
2012), and this feature of visual signals mediates 
detectability by receivers across contexts (e.g. 
Jones & Osorio, 2004; Cole & Endler, 2015); and 
(2) habitats used by putatively conspicuous and 
cryptic morphs in the wild differ in this parameter 
(Rudh et  al., 2011; Willink et  al., 2013). Given 
that aposematism is effective when individuals 
are conspicuous and crypsis is effective when 
individuals are inconspicuous, we predicted that 
the most conspicuous males would spend the most 
time in high ambient light conditions and spend 
the most time displaying while in these conditions.
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MATERIAL AND METHODS

Study populations

We studied wild-caught males from four populations 
in the Bocas del Toro region of Panama (Fig. 1):  
(1) a monomorphic blue population from the 
Aguacate peninsula on the mainland (09°10′37.9″N, 
82°16′00.4″W); (2) a monomorphic red population 
from Isla San Cristobal (9°15′50.1″N, 82°15′56.0″W); 
(3) a monomorphic orange population from Isla 
Solarte (09°19′16.3″N, 82°29′49.5″W); and (4) a red/
blue/intermediate population from the mainland of 
Panama (9°13′15.70″N, 82°13′5.60″W). The three 
monomorphic populations span the previously 
reported range of visual conspicuousness in O. pumilio 
morphs, with orange frogs from Isla Solarte among 
the most conspicuous, blue frogs from the Aguacate 
peninsula the least conspicuous, and red frogs from 
Isla San Cristobal of intermediate conspicuousness 
(Fig. 1; Prӧhl & Ostrowski, 2011; Rudh et al., 2011; 
Maan & Cummings, 2012). In a red–blue polymorphic 
region on the Aguacate peninsula, red frogs are more 
conspicuous than blue ones, with intermediate frogs 
being, as expected, intermediate (Dugas et al., 2015; 
Yang et al., 2019). Following previous experimental 
work, we selected a non-random sample of frogs from 

the polymorphic population, choosing individuals 
from the extremes of red and blue and the most 
‘intermediate’ (Yang et  al., 2016); by-eye colour 
classification is equivalent to other methods, at least 
at these extremes (Dugas et al., 2015; Yang et al., 
2016, 2019). We used 20 frogs from each monomorphic 
population and 23 red, 23 blue and 26 intermediate 
frogs from the polymorphic population.

Study animals and experimental design

After capture, animals were maintained in captivity at 
the Smithsonian Tropical Research Institute’s Bocas 
del Toro field station for 7.7 ± 4.9 days (mean ± SD) 
before testing. During this time, frogs were held in 
plastic enclosures (37 cm × 22 cm × 25 cm) at low 
densities (five or fewer frogs per tank). We held tanks 
outdoors in ambient temperature and humidity; we 
misted tanks as needed and provided small cups of 
rainwater to prevent water stress. Frogs consumed 
wild insects (mostly Drosophila spp.) attracted to ripe 
fruit placed within the tank, and we supplemented this 
diet with termites. There was no mortality during this 
study, and we returned all individuals to their place of 
capture at the end of the experiment.

Figure 1.  Coloration of Oophaga pumilio study populations of from the Bocas del Toro region of Panama. Frogs from Isla 
Solarte (A) are the most visually conspicuous, with those from Isla San Cristobal (B) intermediate and those from the 
Aguacate peninsula (C) among the least conspicuous. In a polymorphic population on the Aguacate peninsula, red frogs (D) 
are more conspicuous than intermediate (E) and blue (F) frogs.
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In the late afternoon on the day  before an 
experimental trial, we moved individual frogs from 
these maintenance tanks to experimental arenas. 
On a single observation day, we observed either frogs 
from monomorphic populations (in equal numbers) 
or frogs from the polymorphic population (equal 
numbers of red, blue and intermediate individuals). 
Experimental arenas consisted of three transparent 
plastic containers (23 cm × 23 cm × 13 cm; hereafter, 
‘modules’) separated by opaque polyvinyl chloride 
‘tunnels’ measuring 5.08 cm in diameter and ~5 cm 
in length (the minimal distance needed to connect 
modules; Supporting Information, Fig. S1). We covered 
the floor of the entire arena in leaf litter that we 
moistened with ultraviolet-filtered water between 
trials, and used brown cardboard spacers to prevent 
visual contact between males in different arenas. 
In the two modules at either end, we added a small 
cup filled with water and a small-diameter (~1.5 cm) 
locally collected stick as a perch. The middle module, 
in which most ambient light was filtered out (see next 
paragraph), was intended to function in the same way 
as a neutral zone would in a dichotomous mate choice 
assay (e.g. Yang et al., 2016); therefore, a perch and 
water dish were not provided. When introducing frogs 
to the arena, we always placed them in the middle 
(dark, perch-free) module.

We manipulated the ambient light conditions in 
each module by using theatrical light filters as the 
roof. These filters reduced the overall intensity of light 
equally across the light spectrum (i.e. they changed 
the intensity but not the colour of light). A ‘dark’ 
filter (Lee Filters #211) used in the middle (neutral) 
module allowed 10% light transmittance, a ‘light’ 
filter (Lee Filters #130) allowed 95% transmittance, 
and a ‘medium’ filter (Lee Filters #20) allowed 70% 
transmittance. All arenas were kept in a well-covered 
outdoor area (pilot results suggested that arenas 
were not robust to the elements). Because ambient 
light was thus low, we provided supplemental light 
to arenas with overhead lamps filtered to resemble 
light conditions at the forest floor (sensu Maan & 
Cummings, 2008; Richards-Zawacki & Cummings, 
2011). We conducted all behavioural observations 
between 21 December 2012 and 4 January 2013. We 
turned on lights at dawn and began focal observations 
30 min later. We recorded male behaviours during 
four 15 min observations, spaced evenly between our 
start and 12.00 h, the period of the day during which 
O. pumilio are most active (Graves, 1999).

During behavioural sampling, we recorded the total 
time spent in each module and the total time spent 
on elevated perches (the perch, water dish and lip of 
the polyvinyl chloride tunnel that connected modules). 
Calling was infrequent; therefore, we did not record or 
analyse this behaviour. The 119 males (of 132 total) 

that spent at least some time perching in the light or 
medium modules spent 41 ± 33% of perched time using 
the perch, 27 ± 28% using the water dish and 32 ± 33% 
using the tunnel lip. We summed data for the entire 
trial (total = 900 s of observation) for subsequent 
analysis. For four observations (two Aguacate, one 
each polymorphic red and blue), we did not record the 
entire observation period; we excluded these samples 
from total time allocation analyses, but retained them 
when the dependent variable was a proportion (see 
‘Statistical analyses’).

Statistical analyses

We compared the behaviour of monomorphic 
populations and of red/blue/intermediate individuals 
from the polymorphic population with separate 
analyses. We assessed the relationship between 
frog colour and preference for microhabitats of 
various absolute irradiance intensities with two 
complementary approaches. First, we compared 
the total time spent outside the dark module 
among populations (or phenotypes) using a general 
linear model, with population (or phenotype) as 
the sole fixed effect; in this analysis, we square-
root transformed ‘time’ to meet the assumption of 
residual normality. Second, we compared time spent 
in the high vs. medium light modules (both of which 
had perches and water dishes) by individuals from 
different populations (or phenotypes). We used a 
linear mixed model, with light treatment, population 
(or phenotype) and the light treatment × population 
(or phenotype) interaction as fixed effects, and 
individual as a random effect; degrees of freedom were 
estimated with the Kenward–Roger approximation. 
Residuals from this model were normally distributed 
without transforming the dependent variable ‘time’ 
(in seconds).

To ask whether ambient  l ight  treatments 
influenced perching time, we used a generalized 
linear mixed model with events/trials syntax, 
in  which t ime spent  perching in  a  l ighting 
env i ronment  and  to ta l  t ime  spent  in  that 
environment were treated as events and trials, 
respectively. The model included ambient light 
treatment (high or medium), population (or 
phenotype) and the light × population interaction 
as fixed effects, and individual as a random effect; 
we did not include perching behaviour in the dark 
treatment (intended as a neutral zone) because 
this module did not contain perches or water 
dishes (see ‘Study animals and experimental 
design’ above). Treating the response variable as 
events/trials required that instances in which an 
individual spent no time in a particular module 
(i.e. trials = 0) were not included in the analysis. 
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Thus, an individual was represented in the data 
set one or two times, depending on how many 
light treatments it used during the experiment. 
Initially, we used the number of seconds as the 
unit for our response variable, but these models 
were overdispersed (χ 2/d.f. for among-population 
comparison = 131.2, for among-phenotype in the 
polymorphic population = 172.6). Fit was greatly 
improved by simply converting the unit to 4 min 
(χ 2/d.f. for among-population comparison = 1.0, for 
among-phenotype = 1.3), and we present results 
from analyses in these units hereafter. We again 
used the Kenward–Roger approximation for fixed 
effect degrees of freedom. We used SAS v.9.4 (SAS 
Institute, Cary, NC, USA) for all analyses.

RESULTS

Allocation of time among modules differing in 
ambient light

Individuals from all three monomorphic populations 
spent similar amounts of time in the dark module 
(F2,55 = 1.08, P = 0.346), as did individuals of all 
three colour types from the polymorphic population 
(F2,67 = 0.12, P = 0.887). Likewise, there was no 
evidence that differently coloured populations 
of frogs spent different amounts of time in high 
or medium light (F1,102 = 0.42, P = 0.521) or that 
the light treatment  ×  population interaction 
was important (F1,102  =  0.80, P  =  0.454). In the 
polymorphic population, frogs did not spend more 
time in medium than high light (F1,120  =  2.57, 
P = 0.112), and all phenotypes responded in a similar 

manner (light × phenotype interaction: F2,120 = 1.07, 
P = 0.345). Neither the main effect of population 
(F2,102 = 0.35, P = 0.705) nor phenotype (F2,120 = 1.17, 
P = 0.315) was significant, and stepwise removal 
of non-significant terms did not have a qualitative 
effect on the patterns presented above.

Perching behaviour in modules differing in 
ambient light

In the among-population comparison of time spent 
in medium and high ambient light, the predicted 
population × ambient light treatment effect was 
absent (F2,102 = 0.44, P = 0.644). In a model with this 
interaction removed, there was a marginal effect of 
ambient light treatment (F1,104 = 3.29, P = 0.072), with 
males spending relatively more time perched in the 
high light treatment. Populations differed in overall 
perching behaviour (F2,51.52 = 3.93, P = 0.026), with the 
most cryptic blue frogs perching the most, followed by 
intermediate red frogs, and conspicuous orange frogs 
perching the least (Fig. 2).

In the comparison of time spent in medium and 
high ambient light by red, blue and intermediate 
frogs from the polytypic population, there was also no 
evidence that differently coloured individuals perched 
differently in high and medium light treatment 
modules (population × ambient light: F2,120 = 1.51, 
P = 0.226; Fig. 2). A model with this interaction removed 
revealed no overall effect of ambient light on perching 
(F1,122 = 1.23, P = 0.270) but did suggest differences 
among phenotypes (F2,61.4 = 3.38, P = 0.041), with blue 
and intermediate frogs spending less time perching 
than red individuals (Fig. 2).

Figure 2.  Estimated marginal mean of time spent perching by Oophaga pumilio morphs in the ambient light choice 
experiment. Estimated marginal means are from a model that contained the fixed effects of light (95 or 70% transmittance), 
which was non-significant, and population (A) or phenotype within a polymorphic population (B).
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DISCUSSION

We allowed diversely coloured O. pumilio morphs 
to choose between microhabitats that differed only 
in the intensity of ambient light, a feature of the 
environment central to overall signal conspicuousness 
and crucial to habitat selection in poison frogs (Rudh 
et al., 2011; Maan & Cummings, 2012; Willink et al., 
2013) and other colourful tropical animals (Endler & 
Théry, 1996; Hill et al., 2001; Heindl & Winkler, 2003). 
Contrary to predictions drawn from previous work, 
we found no evidence for microhabitat preference 
among populations or among phenotypically distinct 
groups of individuals from a polytypic population 
hypothesized to span cryptic–aposematic strategies. 
We found little to suggest that male O.  pumilio 
adjusted their perching behaviour in response to 
ambient light, but populations and phenotypes within 
the polymorphic population did differ in their overall 
tendency to spend time on elevated perches. Among 
populations it was, surprisingly, the least conspicuous 
males that spent the most time perching. Within a 
polymorphic population, however, it was indeed the 
more conspicuous red individuals that spent more time 
perching than the more cryptic blue or intermediate 
males. These patterns suggest integrated phenotypes 
associated with coloration in the polytypic Bocas 
del Toro O. pumilio, but leave open the questions of 
why among-population differences did not match our 
predictions and why the relationship between colour 
and behaviour might not be the same among and 
within populations.

In the wild, the perches used by male O. pumilio 
of putatively aposematic morphs make frogs easier 
for predators to see (at least in part because ambient 
light levels are high) than do perches used by males 
of putatively cryptic morphs (Rudh et al., 2011; see 
also Willink et al., 2013, 2014a). Our results suggest, 
however, that this pattern might not stem exclusively 
from morph-specific preferences for microhabitats that 
differ in ambient light intensity. The crucial question 
remains, then, whether the patterns in nature result 
from correlated selection on colour and preferences for 
this feature of microhabitat.

Natural perches can shape signaller fitness 
via effects of ambient light intensity and spectral 
composition (i.e. colour) on how receivers detect and 
assess visual signals (e.g. Endler & Théry, 1996; Rojas 
et al., 2014b). Given that light intensity and colour 
covary in habitats used by poison frogs (Endler, 1993), 
frogs could choose bright habitats by using (and 
evolving preferences for) criteria other than brightness. 
Plant material that partly conceals a calling male 
(Willink et al., 2013) will, for example, alter both the 
colour and the intensity of ambient light (Endler, 
1993). Natural perches also vary in ways that might be 

independent of light environment. Within O. pumilio 
populations, the height of a perch is important to 
male reproductive success (Pröhl & Hödl, 1999), and 
the response to simulated predator approach suggests 
that high perches are perceived as more valuable 
(Dugas et al., 2015). Preferences for height and other 
as yet unexplored features of perches (e.g. acoustic 
properties; Muñoz & Penna, 2016) could exaggerate or 
mask any associations between frog colour and light 
environment preference. This is especially problematic 
when comparing monomorphic populations, because 
doing so assumes equal microhabitat availability 
across habitats (Dugas et al., 2015). Testing this 
latter assumption might also reveal the role of such 
differences in habitat in driving and maintaining 
colour diversity (Marchetti, 1993).

O p p o s i t e  r e l a t i o n s h i p s  b e t w e e n  v i s u a l 
conspicuousness and time spent perching among and 
within O. pumilio populations might offer further 
insights into how best to test the hypothesis that anti-
predator morphologies are integrated with behavioural 
traits in polytypic/polymorphic species. If coloration 
and behaviours become correlated, in full or in part, 
via plastic responses to actual risk (Lima & Dill, 1990; 
Stankowich & Blumstein, 2005), among-population 
differences are difficult to interpret without knowledge 
of this risk. Perching male frogs might be particularly 
susceptible to risk, because they call frequently (Pröhl 
& Hödl, 1999; Pröhl, 2003; Meuche et al., 2013), and 
their fairly static position while calling might make 
aposematic coloration less effective (Paluh et al., 
2014; Rojas et al., 2014a; Blanchette et al., 2017). 
Quantification of chemical defense from wild frogs 
provides some evidence that males might be attacked 
more often than females (Saporito et  al., 2010), 
meaning that opportunities for actual risk to trigger 
plastic behavioural responses do exist. Within the 
red/blue/intermediate polymorphic population, where 
the background rate of attack risk is presumably the 
same for males of all colours, we found that the most 
conspicuous males (the red ones) did spend the most 
time perching, as predicted if their perceived level of 
risk was lowest. This pattern suggests that red might 
be a better defensive colour than blue or intermediate 
(Hegna et al., 2013; Richards-Zawacki et al., 2013) 
in this population (as it might be more generally; 
e.g. Casas-Cardona et al., 2018). Given that perching 
males are expected to balance the costs and benefits 
of this activity, it is also possible that the benefits 
accrued through perching are higher for red males. 
Even in qualitatively monomorphic populations, there 
is considerable variation in poison frog coloration, 
including variation between the sexes (Crothers et al., 
2011; Rojas & Endler, 2013), and this variation might 
be key to uncovering the evolutionary and plastic 
correlates of anti-predator strategies.
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Expectations of how colour and behavioural traits are 
selected and should co-evolve in groups like poison frogs 
are based largely on the presumption that evolution 
occurs along a continuous crypsis–aposematism axis (e.g. 
Rudh et al., 2011, 2013; Maan & Cummings, 2012; Dugas 
et al., 2015), a presumption that may warrant further 
scrutiny. Although the red ubiquitous in mainland 
O.  pumilio populations offers protection against 
predators (Saporito et al., 2007; Paluh et al., 2014), there 
is scant evidence that local coloration protects against 
attack in polytypic Bocas del Toro populations (Hegna 
et al., 2013; Richards-Zawacki et al., 2013; Dreher et al., 
2015). This pattern is not conclusive; model prey fool 
only part of the predator community (Rojas, 2017), 
and anthropogenic habitat modification has probably 
reduced the abundance and diversity of the predators 
with which defenses co-evolved (Summers et al., 2003; 
Prӧhl & Ostrowski, 2011; Richards-Zawacki et al., 2013). 
Furthermore, the relationship between colour and 
chemical defense is not perfect (Saporito et al., 2006; Maan 
& Cummings, 2012). Although the blue (Aguacate) and 
red (San Cristobal) morphs we studied differ in visual 
conspicuousness, and behavioural differences have 
been treated as representatives of different strategies 
(Rudh et al., 2011, 2012; Rudh, 2013), their chemical 
defenses might be fairly similar (Maan & Cummings, 
2012). The ubiquity of amphibians that are colourful 
but not chemically defended or chemically defended but 
not colourful (Wells, 2007) provides further, and strong, 
evidence that coloration and chemical defense can be 
subject to independent selective pressures.

Predation can drive the evolution and maintenance of 
diversity in prey traits (Allen, 1988; Ruxton et al., 2004; 
Bond, 2007). Studies of such diversity in prey can offer 
insights into how multiple traits that shape predation 
risk (e.g. coloration and behaviour; Rojas et al., 2014a) 
act in conjunction to shape fitness, and these insights 
can, in turn, be used to generate predictions about 
how selection should operate on trait combinations in 
this context, and more broadly (Sinervo & Svensson, 
2002; Pigliucci & Preston, 2004; Bond, 2007). When 
the prediction of integrated expression of traits is met, 
this confirmation of the underlying hypothesis points 
to widespread implications for how evolution works 
(Bond, 2007; Forsman et al., 2008). Equally valuable 
are cases in which these expectations are not met (e.g. 
Calsbeek & Cox, 2012), because they suggest even 
more diverse ways that selection can shape traits with 
competing and complementary effects on fitness.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website.

Figure S1. Apparatus used to test for ambient light preferences and light-dependent behaviour in Oophaga 
pumilio males. Modules were fitted with lids that allowed 95 (pictured left), 10 (middle) or 70% (pictured right) 
light transmittance from above. The middle module served as a ‘neutral zone’, and water dishes and wooden 
perches were supplied in the other modules to encourage perching display behaviours.
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