
Vol.:(0123456789)

Symbiosis 
https://doi.org/10.1007/s13199-024-01031-0

A review of the venom microbiome and its utility in ecology 
and evolution including future directions for emerging research

Marina E. De León  · Eduardo G. P. Fox  · Sara Dunaj  · Ronald A. Jenner  · Carl N. Keiser  · Jason Macrander , et al. [full 
author details at the end of the article]

Received: 24 July 2024 / Accepted: 24 December 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2025

Abstract
Microbes play vital roles in ecological systems, yet their presence and functions within venom environments of venomous 
organisms remain understudied. Despite the prevalent belief in the sterility of venoms, recent findings reveal diverse microbial 
communities within venom systems. This review aims to explore the relationships between venoms and microbes, highlight-
ing their potential roles in evolutionary processes, ecological interactions, and therapeutic advancements. Venoms, composed 
of toxins utilized in hunting or defense, represent a rich source of natural products with applications in drug discovery and 
therapy, exemplified by FDA-approved venom toxin-derived drugs. Understanding microbial resistance mechanisms against 
antimicrobial peptides can illuminate coevolutionary processes and guide therapeutic development. Integrating hologenomic 
evolution and microbial ecology frameworks will facilitate comprehensive research on venom-microbiome interactions, and 
reveal the evolutionary drivers of venom diversification. Investigating and investing in these relationships promises advance-
ments in understanding evolution, ecology, and biotechnology, with implications for human health and ecological conserva-
tion. This review synthesizes existing knowledge, identifies many gaps in literature, and investigates critical unanswered 
questions in the field of venom microbiology, encouraging ongoing and future collaborative research.
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The iVAMP consortium   iVAMP is a collaborative, open-source 
group of researchers around the world with a shared interest in 
studying the interactions between microorganisms, parasites, and 
venom. Our long-term aim is to investigate venom glands as potential 
microenvironments for microorganisms, establishing an inclusive 
network of scientists, promoting sample sharing, data collaboration, 
and engaging the general public in research projects. iVAMP seeks 
to expand the direction and reach of the fields of host-microbe 
interactions, microbiology, and venomics through collaboration and 
open data sharing. The consortium aspires to compile collaborative 
data into an open-source platform, making valuable research accessible 
to the public. Future efforts include cataloging species and NCBI 
Sequence Read Archive (SRA) IDs for select venom and venom-
associated bacterial transcriptomes on the iVAMP website as the 
consortium continually works towards establishing a comprehensive 

resource for the scientific community and the general public. iVAMP 
emphasizes continuous inquiry, discussion, and engagement with 
the general public to foster interest and understanding of ongoing 
research projects. iVAMP provides a unique opportunity to highlight 
the transformative impact of non-hierarchical structures in practice, 
exemplified by the leadership of underrepresented groups of 
people authoring this review. This representation not only enriches 
the diversity of perspectives within our group but also serves as a 
powerful example of inclusivity in STEM. Additionally, it underscores 
our commitment to fostering career development opportunities for 
individuals from underrepresented regions, such as the global South. 
Through collaborations and funding initiatives facilitated by iVAMP, 
we strive to create a supportive environment where researchers from 
diverse backgrounds can thrive and contribute to our shared mission 
of advancing scientific knowledge.

1  Introduction

Microbes are essential factors in ecological niches, yet 
their presence and functions are vastly underexplored in 
venom systems (Gibbons and Gilbert 2015). Given the 
fundamental importance of microbial life in every eco-
system, venom-associated microbiomes likely influence 

evolutionary pathways, ecological interactions of venom, 
and offer potential avenues for biotechnological and thera-
peutic advancements. Venom is a biological agent consist-
ing of toxins used to support behaviors such as hunting 
or defense. This systematic review aims to investigate 
the interactions between venoms and microbes, elucidat-
ing potential microbial properties of venoms and their 
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contributions to evolutionary processes, ecological dynam-
ics, as well as promising applications in biotechnology and 
therapeutics. Toxins from both microbes and venomous 
animals have proven to be a rich library of natural prod-
ucts for drug discovery, with examples such as botulinum 
toxin, discovered from Clostridium botulinum used in 
ophthalmology, neurology and dermatology, while diph-
theria toxin discovered from Corynebacterium diphtheriae 
is being adapted for cancer treatment (Ting and Freiman 
2004; Shafiee et al 2019). Additionally, six venom toxin-
derived drugs are already FDA approved and in clinical use 
(Herzig et al. 2020). Venoms contain mixtures of bioac-
tive molecules, including small molecules, salts, peptides 
and proteins, collectively referred to as toxins (Kaas and 
Craik 2015). Venom systems have evolved independently 
more than 100 times in an extremely diverse range of taxa 
spanning at least eight phyla (Schendel et al. 2019). The 
majority of animal venoms have evolved for predation and/
or defense but can also serve a remarkable variety of func-
tions, including intraspecific competition, conspecific com-
munication, chemical detoxification; detection of enven-
omed prey, courtship and mating, offspring care, defense 
against microbial pathogens and ectoparasites, and interest-
ingly, venom is also used by some animals during self- and 
allogrooming to detox and suppress microbial pathogens, 
and by other animals during mating as well as to compete 
for mates (Schendel et al. 2019).

Cocktails of toxic compounds are either termed venoms 
or poisons, depending on the mode of delivery. Venom appa-
rati are the anatomical structures or organs involved in the 
production, storage and active delivery of animal venoms; 
for example, typically there is a main venom gland produc-
ing the venom, which then accumulates in a sac or flows via 
ducts to be injected into the target via delivery structures, 
typically fangs, stingers, or spines that create a wound (Van 
Marle and Piek 1986). Venom is typically produced by spe-
cialized glands that are usually directly attached to a deliv-
ery system, with but few exceptions such as the slow loris 
employing a two-step venom delivery system (Grow et al. 
2015). In contrast, poisons are toxic compounds that can 
accumulate either in specialized glands, such as the parotid 
glands of toads, or in single cells distributed throughout 
the organism but are not associated with a delivery mecha-
nism (Brodie 2009). Poison may passively enter the blood-
stream through inhalation, ingestion, or through the skin via 
absorption (Harris and Arbuckle 2016). This is because the 
molecules are typically small enough to pass through the 
membrane barriers. However, with some exceptions (e.g., 
venom peptides), venom molecules tend to be too large to 
pass through the cellular membranes or enter through para-
cellular absorption and therefore require specialized sharp 
piercing devices to breach the external barrier and penetrate 
the victim’s body.

In recent years, next-generation sequencing technology 
has advanced our knowledge of host-associated microbiomes 
(Gill et al. 2006; Clooney et al. 2016). Animals are inhab-
ited by and have coevolved with complex microbial com-
munities that are regionally specific such as the gut, repro-
ductive tract, or oral microbiomes, and provide a suite of 
functions that span from immune response to reproduction. 
However, few studies focus specifically on venom micro-
biomes (Torres et al. 2017; Dunbar et al. 2019; Klein et al. 
2019; Dunaj et al. 2020; Yang et al. 2021; Esmaeilishirazi-
fard et al. 2022). The dearth of studies focusing on venom 
microbiomes may be due to the prior assumption that venom 
glands are sterile due to the antimicrobial properties of many 
venoms. However, it has become increasingly apparent that 
venoms and their associated microbiomes are more com-
plex than previously thought (Ul-Hasan et al. 2019, Dunbar 
et al. 2020). Many, if not most venoms contain components 
such as antimicrobial peptides (AMPs) and the literature 
on venom antimicrobial properties is extensive. Given that 
microbes inhabit every ecological niche on Earth (Mar-
tiny et al. 2006), it should come as no surprise that venom 
systems also contain resident microbes, and that these 
microbes likely evolved resistance mechanisms to venom 
AMPs (Fig. 1) (Esmaeilishirazifard et al. 2022). Studying 
the resistance mechanisms employed by venom-resident 
microbes against AMPs will aid in the understanding of the 
coevolutionary dynamics between venomous organisms and 
their microbial communities. Additionally, understanding 
how these microbes withstand the antimicrobial properties 
of venom components may have useful implications for the 
development of novel therapeutics and antimicrobial agents. 
A framework is needed for researching venom-microbiome 
interactions that takes into account hologenomic evolution 
(which includes microbial and host genomes) and micro-
bial ecology. This approach should guide studies aimed at 
understanding the evolutionary drivers of venom evolution, 
as well as those focused on discovering natural products and 
novel therapeutics.

1.1 � A comprehensive summary of venom 
microbiology and venomics

While the study of microbiomes falls under the broader 
umbrella of microbiology, the specific methodologies 
employed to study venom microbiology and venom micro-
biomes are distinct. Venom microbiology, which tradition-
ally focuses on culture techniques, may not capture the 
full microbial diversity present in a sample. In contrast, 
venom microbiomes, which are studied using molecular 
genetics and profiling techniques, offer a more comprehen-
sive understanding of the microbial diversity present in a 
sample by encompassing a broader range of microorgan-
isms, including those that may be difficult to culture. Both 
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culture -dependent and -independent studies are valuable 
and function in synergy with one another in understand-
ing the biology of host-microbe interactions. For exam-
ple, Streptomyces spp. was identified in the venom duct 
of Conus (a genus of predatory sea snails) using culture-
dependent methods (Peraud et al. 2009; Quezada et al. 
2017), while Stenotrophomonas spp. was identified in 
venom of multiple Conus species using culture-independ-
ent methods (Torres et al. 2017). The findings of these 
studies, taken together, have significantly contributed to 
our understanding of symbiosis and coevolution as they 
pertain to venom microbes and host ecology.

Venomics is the study of animal venoms and their com-
ponents through integration of genomics, transcriptom-
ics, and proteomics, providing a broad characterisation 
of venoms (Calvete 2017; Wilson and Daly 2018; Walker 
et al. 2020). Research in this field involves identifying and 
characterizing venom toxins, and studying the evolution-
ary relationships between venomous species to under-
stand the diversity and adaptations of venomous organ-
isms. Despite significant progress in venomics, many 
venom systems have not been thoroughly studied and their 

venom composition and the full range of toxins they pro-
duce remain largely unknown. The limited scope of venom 
microbiome studies has primarily focused on a select few 
animal hosts. Some highlighted hosts leave a substantial 
void in our understanding of host-microbe coevolution, 
microbial diversity across taxa, and the functional roles 
of microbes in venoms. The vast majority of venomous 
animal hosts remain unexplored. This limitation restricts 
our understanding of the breadth and depth of microbial 
associations, the evolutionary dynamics shaping ecological 
relationships, and the potential roles of microbes in venom 
production, modification, and delivery.

The 'omics' revolution has propelled venom research, 
leading to the emergence of venomics as a recognized 
field. Understanding the evolutionary processes that shape 
venom composition and the ecological roles of specific 
toxins is an active area of research. Researchers such as 
those associated with the Initiative for Venom Associated 
Microbes and Parasites (iVAMP, https://​ivamp-​conso​
rtium.​github.​io/) are investigating the diversity and func-
tion of microorganisms within the venom microbiome and 
how they interact with the host and venom components. 

Fig. 1   Hypotheses for the bacterial colonization of venom glands. 
Bacteria colored red indicates their confirmed presence within the 
venom gland. Bacteria colored black indicate unconfirmed presence 
within the venom gland. Hypothetical modes of entry by bacteria are 
represented by arrows and “?”. a) Snake venom gland exhibiting bac-
terial colonization, potentially through environmental entry via hol-
low fangs. b) Similarly, a spider venom gland showing bacterial colo-
nization, possibly facilitated by environmental entry through hollow 
fangs. c) Jellyfish surface mucus harbors environmental bacteria, pos-

sibly facilitating toxin transmission to nematocysts upon contact with 
cnidocytes. d) Bacteria have been observed within the venom glands 
of hymenopterans, but colonization method is unknown. e) A scor-
pion telson containing bacteria within venom gland tissue, potentially 
due to vertical transmission from mother to embryo during reproduc-
tion. The figure background was sourced from BioRender, individual 
organisms were drawn using Procreate version 5.3.10, and the figure 
was assembled in the 2024 version of Adobe Illustrator

https://ivamp-consortium.github.io/
https://ivamp-consortium.github.io/
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Studies are being conducted to understand the roles of 
the venom microbiota in toxin production, venom com-
position, venom potency and function, as well as venom 
evolution (Ul-Hasan et al. 2019).

Advanced systems biology approaches such as 
metagenomics, metaproteomics, and metabolomics, 
are frequently used to study collective communities of 
microorganisms, encompassing bacteria, viruses, pro-
tists, unicellular eukaryotes, and fungi, residing within 
a specific environment or organism. These techniques 
enable the exploration of microbial composition, diver-
sity, and function in various ecosystems and organisms. 
The increasing biomedical interest in venom toxins is 
driving advancements in their artificial synthesis. This 
interest also motivates researchers to try and overcome 
challenges associated with obtaining and growing venom 
gland secretory tissues in vitro, as well as navigate the 
difficulties in obtaining venom directly from venomous 
animals and purifying toxins while respecting biodi-
versity and bioprospecting laws. Sourcing the genetic 
material for these cultures is also covered by interna-
tional laws on bioprospecting to foster accessibility and 
beneficial sharing as an addition to the Convention on 
Biological Diversity, commonly shortened to the Nagoya 
Protocol (Knauf et al. 2019). For instance, a method for 
culturing venom gland secretory cells from the aggres-
sive ‘Novateiro’ ant Pseudomyrmex triplarinus was 
patented (patent no. C12N5/0601) (Hink 1985; Hink 
and Butz 1985). Although there have been no recent 
developments to this method, this technology sets the 
framework for not only producing toxins in vitro, but 
also for culturing venom-associated microbes. Similar 
culturing methods have been described for venom tissues 
from the Brazilian armed spider Phoneutria nigriventer 
(Silva et al. 2008) and the venomous snail Conus cum-
ingii (Viswanathan et al. 2018). The feasibility of tissue 
culturing for venom production is contingent upon the 
specific organism and its cellular characteristics. While 
producing snake toxins in vitro using venom gland orga-
noids has been successful (Vogt 2020), challenges could 
arise when dealing with venomous arthropods, whose 
cells are notoriously difficult to maintain in culture. It 
has been shown that bacterial culture media containing 
venom can be used for selection of venom-adapted strains 
of Enterococcus faecalis over wild type strains (Supple-
mentary Table 1) (Torres et al. 2017; Dunbar et al. 2019; 
Klein et al. 2019; Dunaj et al. 2020; Yang et al. 2021; 
Esmaeilishirazifard et al. 2022). However, this is only 
practical where large amounts of filter-sterilized venom 
are available. It is currently unknown whether venom 
culture media would allow growing otherwise uncultur-
able species. If traditional and novel culture methods 
are combined, successfully isolated symbiont strains 

from invertebrate venom apparatuses could be adapted 
into venom gland cell cultures, enabling studies about 
the biological features of this untapped microbiologi-
cal diversity in controlled Petri dish environments. For 
example, organoid cultures, with their abilities to rep-
licate complex tissue structures and functions, offer a 
versatile and powerful platform for advancing our under-
standing of microbiomics, ranging from infection studies 
to exploring host–microbe interactions in various physi-
ological contexts. Organoid cultures utilize microinjec-
tion, triple co-cultures to mimic complex interactions, 
and monolayer methods that help to study cell signaling 
pathways, immune responses, or gene expression pat-
terns during host–microbe interactions, all in order to 
create more complex models that simulate host–microbe 
dynamics (Dutta and Clevers 2017).

Unlike venomics, which integrates proteomics 
with metabolomics, transcriptomics and/or genomics 
of venom components, microbiomics often relies on 
metagenomics for a comprehensive analysis of micro-
bial communities. Other key techniques in microbiomics 
include 16S/18S/ITS rRNA metabarcoding and sequenc-
ing, whole genome sequencing for microbial commu-
nity profiling and shotgun metagenomic sequencing for 
a more detailed genomic analysis of gene function in 
microbial populations. Research in microbiomics often 
aims to understand the interactions between microorgan-
isms and their hosts, elucidating the impact of microbes 
on host health and disease. Ongoing research in ven-
omics and venom microbiomes focuses on uncovering 
novel toxins, understanding the evolutionary aspects of 
venom, and investigating venom proteomics and genom-
ics. Exploring the diversity and function of venom-asso-
ciated microorganisms and investigating the potential 
therapeutic applications arising from these discoveries 
is necessary for understanding venom biology. While 
the importance of microbiomes in secreted toxins, such 
as tetrodotoxin (TTX) in newts, has been substantiated 
(Vaelli et al. 2020), the role of the microbiomes in ven-
oms is much less understood.

Known symbiont model systems in the broader micro-
biome community encompass a diverse range of organ-
isms including corals, squids, the human gut, and aphids 
(O’Brien et al. 2019). These symbiont-model systems 
have been instrumental in uncovering the functional 
importance of symbiotic relationships and their impact 
on host health, development, and ecology. Studying the 
venom microbiome can also provide information on 
the functional significance of venomous host-microbe 
interactions, and reveal their effects, if any, on venom 
composition, toxin evolution, and potential therapeutic 
applications, while advancing our understanding of host-
microbe dynamics in specialized ecological niches. Here 
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we provide an overview of venom-microbiome systems, 
and a set of best practices to help guide the direction of 
this emerging field of research, especially focusing on 
multidisciplinary studies.

2 � Venomous host systems

There exists a prevailing bias in venom microbiome stud-
ies towards Arthropoda, particularly spiders, scorpions, 
and stinging insects (hymenopterans, such as ants, bees and 
wasps). This bias likely stems from the accessibility of these 
models for exploratory studies and their well-known associa-
tion with microbiota, such as the bacterial endosymbionts 
Wolbachia, which are important for understanding arthro-
pod vector-borne diseases. In this review, we broaden the 
scope beyond arthropods, encompassing other animal taxa 
that have been subject to venom microbiome studies. The 
following section synthesizes, in detail, the limited research 
conducted on organisms that have demonstrated evidence 
of microbial associations with their venom, bringing to 
light many aspects of these systems that are yet to be fully 
understood.

2.1 � Cnidaria

Cnidarians are a diverse group of marine animals encom-
passing jellyfishes, hydra, sea anemones, and corals. Rep-
resenting the earliest lineage of venomous animals, cnidar-
ians deliver their venom through organelle-derived cellular 
structures called nematocysts (Ozbek 2011; Sierra and Gold 
2024). The nematocysts are contained within specialized 
cells called cnidocytes, and function like microscopic har-
poons for venom delivery, serving as a defining synapomor-
phy for the entire phylum (Daly et al. 2007; Fautin 2009; 
Jouiaei et al. 2015). While the term “gland” is informally 
used to describe these structures involved in venom pro-
duction, it is more functional than anatomically precise and 
does not imply the same complexity as glands in other ani-
mals. Beyond nematocysts, venom expression has also been 
reported in different forms of gland cells (Moran et al. 2012), 
ultimately contributing with proteinaceous toxins to the pro-
tective surface mucus layer (SML), common to all cnidarian 
ectodermal layers. Mucus secreted by mucocytes provides 
the SML substrate for microbes to colonize, sustaining 
microbial communities that work synergistically within 
the host to develop an adaptive immune system to defend 
against pathogens (Fig. 1) (Bourne et al. 2016). This unique 
combination of an external secreted mucus containing both 
mutualistic/commensal microbes and venom is distinctive to 
cnidarians among other venomous animals (Bakshani et al. 
2018; Rivera-Ortega and Thomé 2018; Savoca et al. 2022). 
Over 100 cnidarian-derived AMPs have been deposited to 

UniProt (The UniProt Consortium 2019), and of specific 
note is SHK from Stichodactyla helianthus, which has anti-
microbial and ion channel-blocking properties (Castañeda 
et al. 1995; Kim et al. 2017). A synthetic truncated version 
SHK-186 is a potent and selective blocker of the potassium 
channel KV1.4 which has passed Phase 1b clinical trial for 
plaque psoriasis (Castañeda et al. 1995; Tarcha et al. 2017). 
Cnidarian toxins have demonstrated promise in areas such 
as pain management and neuroscience, warranting fur-
ther investigations into their bacteria-venom relationships 
(Osmakov et al. 2013; Liao et al. 2019).

Although cnidarians lack a multicellular, localized 
venom gland or point of envenomation, they were most 
likely the first venomous lineage to coevolve with their 
prokaryotic symbionts that occur and thrive within the 
SML (Rivera-Ortega and Thomé 2018). Within this SML 
there are several peptides that behave both as AMPs, 
as well as cytotoxic or ion-channel targeting peptides 
(Mariottini and Pane 2014; Mariottini and Grice 2016; 
Augustin et al. 2017; Logashina et al. 2017; Jayathilake 
and Gunathilake 2020; Kvetkina et al. 2021; Hernández-
Elizárraga et al. 2022). The microbial assemblages asso-
ciated with zooplankton represent another aspect of the 
ecological dynamics involving pelagic jellyfish and sessile 
cnidarians (Roberts and Suttle 2023; Savage et al. 2023). 
By consuming zooplankton in the water column, cnidar-
ians can incorporate associated microbial communities into 
their diet (Clinton et al. 2021). Common pathogens trans-
ferred to cnidarians via zooplankton consumption are likely 
kept at bay through established beneficial microbial assem-
blages, innate immune repertoire, or a combination thereof. 
Because of this, innate immune genes co-expressed with 
beneficial bacterial peptides may result in strong selective 
pressures for anti-pathogen peptides to be co-expressed 
with toxins used to immobilize prey and avoid targeting 
beneficial microbial communities, exemplifying another 
way that selection can influence the origin of venom 
assemblages by moving through trophic levels. Jellyfish-
associated microbes have been implicated as the cause of 
disease in farmed fish, where pathogens may be directly 
transferred via contaminated stingers (Clinton et al. 2021). 
These examples not only highlight the ecological signifi-
cance of microbial communities in cnidarians, but also 
underscore the potential for coevolutionary mechanisms 
that may shape the venom composition across evolutionary 
time scales (O’Hara et al. 2021). Nematocysts do not con-
tain bacteria, and there is currently no evidence supporting 
the sequestration of toxins by cnidarians from bacteria, but 
it is plausible to hypothesize that bacteria on the surface 
of cnidarians could influence venom production, or that a 
trade-off occurs between venom production and immune 
response, particularly if secretory cells are involved in both 
AMP release and toxin production. Exploring symbiotic 
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relationships between bacteria and toxin production may 
reveal underlying mechanisms and ecological implications 
in the relationships between microbial assemblages and 
venom evolution in pelagic jellyfish and other cnidarians.

2.2 � Mollusca

2.2.1 � Neogastropoda: Conidae

The Conidae family, namely cone snails, are amongst the 
first venomous hosts in which microbial biodiversity of 
venom glands was explored and include culture-dependent 
as well as culture-independent studies (Peraud et al. 2009; 
Quezada et al. 2017; Torres et al. 2017). Likewise, they are 
also amongst the first venomous hosts to be of interest in 
spearheading the field of venom biology from the discovery 
of the peptidic drug ziconotide (Prialt) in the early 1980s 
to the emergence of venom transcriptomics, expanding 
venom research to what is today known as venomics (Hu 
et al. 2012).

Cone snails serve as a strong venom-microbe model sys-
tem. Conidae are incredibly diverse, with over 900 species 
known (“MolluscaBase Eds.” 2024). The venom arsenal 
of each individual species is diverse, with species possess-
ing hundreds to thousands of peptides in a venom cocktail 
(Lewis et al. 2012). Their venom gland mimics that of the 
gut in resembling a long tract with known distinct func-
tions from one end to the other (Marshall et al. 2002; Hu 
et al. 2012). The muscular bulb “pushes” venom out along 
and through the tract for carrying out either prey capture or 
defense behavior (Marshall et al. 2002; Dutertre et al. 2014).

Current literature supports the hypothesis that venoms 
possess a core microbial community across venomous host 
systems (Torres et al. 2017). The reason, however, remains 
under discussion. Exploration of the Californiconus califor-
nicus venom microbial community has resulted in several 
hypotheses: (a) core venom microbes seek and receive ref-
uge from their host, deduced from studies comparing and 
contrasting various organs of the host and its surrounding 
sediment and seawater environment over time (Ul-Hasan 
et al. 2019); (b) the host selects for microbes from the envi-
ronment resulting in a niche community that contributes to 
venom functionality by specific mechanisms of action, such 
as venom microbe small molecules and metabolites influenc-
ing the post-translational modifications of host conopeptides 
(Torres et al. 2017); and (c) core venom microbes may pro-
duce antimicrobial compounds themselves to compete with 
one another and prevent pathogens from colonizing their 
surrounding environment, thereby serving as mutualists to 
the host (Ul-Hasan dissertation data).

The significance of incorporating both culture -depend-
ent and -independent studies, as well as longitudinal and 
latitudinal experiments ranging from in the field versus in 

captivity, points towards more questions for discovery in 
venom microbiomes. Streptomyces are known symbionts 
of many animal hosts, and this may also be true based on 
culture-dependent work in Conidae (Peraud et al. 2009; 
Quezada et al. 2017). Culture-independent work supports 
these findings (Ul-Hasan dissertation data), and addition-
ally suggests Stenotrophomonas may play a symbiotic 
role in the venom across multiple Conidae species (Tor-
res et al. 2017). Captive experiments that place the host 
in various sterile environments mimicking those observed 
in aquaculture also implicate the role of Streptomyces in 
venom activity on a metabolomics level (Ul-Hasan disser-
tation data). Further, integration of not only 16S amplicon 
sequencing but also 18S amplicon sequences led to the 
identification of more than 50% Ochrophyta and approxi-
mately 30% of rare taxa when compared to surrounding 
seawater and other tissues in C. californicus (Ul-Hasan 
dissertation data). There is tremendous room for deeper 
exploration on additional amplicon identification as well 
as metagenomics sequencing. Additionally, pairing micro-
bial sequencing of the venom and host tissues (as well 
as environmental sampling for point of reference) with 
simultaneous metabolomics and proteomics profiling thus 
far suggests a microbial community gradient along the 
venom tract that may be paired with host venom function.

C. californicus can be bred and maintained in captivity, 
contributing to exploration of questions pertaining to hori-
zontal and vertical gene transfer in host development and 
venom microbes associated throughout life stages. Aspects 
such as these are important to consider for identifying a 
strong host system for holistic venom microbiome explora-
tion such that results can be built upon over time and by 
different research groups. The population of C. californicus 
also makes power analyses for identification of the minimum 
sample size for an experiment easy to pinpoint. While it is 
unfortunate so few venom microbiome studies exist within 
the expansive ocean of microbiome research conducted to 
date, it also presents an opportunity for researchers across all 
career stages to pursue and expand this nascent field with the 
intention of establishing a strong foundation that enhances 
current holobiont theory, and enriches natural product dis-
covery as we know it.

2.3 � Arthropoda

2.3.1 � Arachnida: Araneae (spiders)

All families of spiders except the Uloboridae have a 
pair of venom glands which connect to the fangs via two 
venom ducts. Spider venom is injected in very small 
quantities, often < 1 µl (Wigger et al. 2002), and contains 
bioactive compounds that act primarily to paralyze/kill 
prey and defend against predators, though potential roles 



A review of the venom microbiome and its utility in ecology and evolution including future…

in pre-digestion have also been hypothesized (Kuhn-
Nentwig et al. 2011). Spider fangs have specialized struc-
tures such as serrated edges, recurved tips, and micro-
scopic channels that facilitate the efficient injection of 
venom into prey or predators. These unique adaptations 
could influence the types of microbes that colonize the 
venom delivery system. Spider chelicerae, include two 
hollow fangs which typically serve as conduits for venom 
delivery via a direct connection to venom glands situ-
ated in the basal chelicerae in mygalomorph spiders or 
prosoma in araneomorph spiders (Lüddecke et al. 2022). 
This fang anatomy, effectively forming an open biological 
syringe, has prompted speculation that the venom duct 
and accompanying venom gland could be colonized by 
environmental microbes (Fig.  1) (Esmaeilishirazifard 
et al. 2022). The venom gland ecological niche poten-
tially favors microbiota capable of tolerating specific tox-
ins/AMPs present in spider venoms, though it has been 
hypothesized that AMPs in venom function to defend 
against microbial colonization (Langenegger et al. 2019; 
Lüddecke et al. 2022). However, Esmaeilishirazifard et al. 
(2022) found bacterial taxa living inside the venom appa-
rati, rather than simply on the outside of the fangs, and 
Dunaj et al. (2020) cross-validated 16S data with RNA 
sequencing data to verify that several microbial symbionts 
were active inside venom glands of theridiid spiders (Sup-
plementary Fig. 1). Interestingly, Latrodectus spp black 
widows have fewer unique bacterial taxa in their venom 
glands compared to other theridiid spiders, suggesting 
that differences in the toxic environment may influence 
microbial community composition (Dunaj et al. 2020).

In addition to bioactive proteins and neurotoxins, spider 
venoms have been found to contain AMPs. These AMPs 
are mostly linear, α-helical peptides which exhibit anti-
microbial properties, but they also disrupt the integrity of 
eukaryotic cell membranes and are therefore often referred 
to as “lytic peptides” (Langenegger et al. 2019). AMPs 
have been described in the venoms of several spider fami-
lies, including Lycosidae (Yan and Adams 1998; Budnik 
et al. 2004), Zodariidae (Lazarev et al. 2011), Agelenidae 
(Benli and Yigit 2008), and Theraphosidae (Abreu et al. 
2017). Some spider AMPs have been reported to show 
both antifungal and antiviral properties (Yan and Adams 
1998; Ji et al. 2019). Antimicrobial effects of spider ven-
oms are not universal, as the venom from Steatoda nobilis 
exhibited no inhibitory effects against laboratory strains 
of Escherichia coli, methicillin-resistant Staphylococcus 
aureus (MRSA), or Listeria monocytogenes, nor against 
two bacterial species directly isolated from S. nobilis 
fangs—Pseudomonas azotoformans and Staphylococcus 
capitis (Dunbar et al. 2020).

Spider venom-associated microbes are of particu-
lar interest for medical arachnology among increasing 

efforts for development of novel venom-derived antimi-
crobial and antiparasitic drugs (Nixon et al. 2021). A 
particularly promising outcome of investigating venom-
associated microbes in spiders is resolving the dubious 
role of bacteria in spider bite pathology. Reports of bac-
terial infections after alleged spider bites are common, 
and some of the symptoms frequently attributed to spi-
der bites (e.g., necrotic arachnidism or loxoscelism) may 
actually be due to subsequent bacterial infections (Vetter 
et al. 2003). Secondary bacterial infections at the site of 
a spider bite may be due to microbes living on the fangs 
or inside the venom apparatus of spiders or may even 
be due to secondary colonization of the wound (e.g., 
by scratching). Only spiders from the family Sicariidae 
and Hemiscorpius scorpions are known to contain phos-
pholipase D in their venoms, which is largely accepted 
as the cause of dermonecrotic lesions (Swanson and 
Vetter 2005; Isbister and Fan 2011; Hauke and Herzig 
2017; Torabi et al. 2017). For Loxosceles species with a 
known ability to cause necrotic lesions, misdiagnosis of 
necrotic arachnidism is common from areas where these 
spiders do not even occur (Swanson and Vetter 2005). 
Several other spiders were also implicated in necrotic 
arachnidism before a range of systematic prospective 
studies with verified taxonomic specimen identifications 
clarified that their venoms were not likely to be causing 
necrotic lesions (Isbister and Gray 2003; Isbister and 
Hirst 2003; Isbister and Gray 2004; Vetter et al. 2006). 
Furthermore, some lesions could be treated with antibi-
otics, suggesting bacteria as the causative agent of the 
reported pathologies (Isbister 2001). Frequent misdiag-
nosis of spider venom as the causal origin of bite symp-
toms versus bacterial infection, demonstrates the urgent 
need to further understand venom-microbe interactions.

Monteiro et al. (2002) found that removing Clostridium 
perfringens bacteria (using the antibiotic penicillin G) 
from the Loxosceles intermedia spider venom microbial 
community can decrease the severity of necrotic lesions 
in bite wounds (Monteiro et al. 2002). Bacterial commu-
nities on the cuticle of the hobo spider Tegenaria agres-
tis have been investigated by exposing individual spiders 
to MRSA bacteria, but no later evidence for mechanical 
vectoring of bacteria was detected (Gaver-Wainwright 
et al. 2011). Venom from the recluse spider Loxosceles 
gaucho was reported to exhibit antimicrobial properties, 
while also increasing biofilm formation of Pseudomonas 
aeruginosa bacteria (de Oliveira Domingos et al. 2018). 
These examples raise questions about context dependency 
of microbe-venom interactions. In some cases venom may 
have antimicrobial properties and limit bacterial infection 
after envenomation, while in other cases venom may carry 
pathogenic microbes that can cause subsequent infections 
associated with spider bite pathologies. Future research 
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should focus on the interactions and co-evolution of spider 
venom components and microbial communities and might 
clarify whether bacteria or bacterial enzymes are present 
in spider venoms.

2.3.2 � Arachnida: Scorpiones (scorpions)

Scorpions host distinct bacteria within their telsons 
(venom-producing organs). Smeringurus mesaensis and 
Hadrurus arizonensis scorpion species contain unique 
and phylogenetically diverse telson microbiomes (Fig. 1) 
(Shimwell et al. 2023). Scorpions produce venom from 
paired venom glands inside the telson that drain into a 
single duct terminating at the aculeus, these glands also 
contain mucous-secreting cells increasing the viscosity 
of the venom (Kennedy et al. 2021). Microbes in these 
glands may influence the composition of the venom, sug-
gesting a potential link between the presence of bacteria 
in the scorpion's telson and the composition of antimi-
crobial peptides in its venom. Some of these peptides 
may be produced by the telson bacteria rather than the 
scorpion itself (Shimwell et al. 2023). Intracellular Mol-
licutes bacteria may be passed vertically from the moth-
er’s secretory vesicles in secretory cells of the telson 
to their embryos, presumably during reproduction, and 
there is evidence of a long-term coevolutionary relation-
ship between scorpions and specific bacterial symbionts 
(García-Santibañez et al. 2022). The exact nature of this 
relationship is still under investigation. Detailed inves-
tigations of the roles of these microbiomes in the telson 
will require improvements in the telson gland extrac-
tion process to avoid possible environmental contami-
nation, as the scorpion venom glands connect directly 
to the cuticle via the telson muscle, as opposed to most 
arthropods which have distinct compartmented tissues 
(Kennedy et al. 2021).

Numerous AMPs have been isolated from scorpion 
venoms, including a rare component of scorpion venom, 
hadrurin, from the Mexican scorpion Hoffmannihadrurus 
(Hadrurus) aztecus. Hadrurin is similar to other peptides 
found in the secretions of two Glandirana (Rana) frog 
species, specifically the N-terminal segment of gaegurin 
4 and brevinin 2e (Torres-Larios et al. 2000). This partial 
similarity may imply some shared structural or functional 
features between hadrurin and these frog peptides that 
are potentially driven by convergent antimicrobial adap-
tations. The diversity of AMP sequences isolated from 
scorpion venoms allows for powerful structure–activ-
ity relationship studies (Torres-Larios et  al. 2000). 
Many of these peptides are linear cationic amphipathic 
alpha-helices and can be synthesized and modified to 
improve their drug-like properties (Amorim-Carmo et al. 
2022). Genomic studies using palpal muscle tissue from 

Mesobuthus martensii scorpions have identified genes for 
venom peptides (Cao et al. 2013). However, if some pep-
tides in scorpion venoms are produced by bacteria within 
the venom glands, these peptide genes might have been 
transferred horizontally between different organisms shar-
ing the same bacterial taxa associated with their glands. 
This hypothesis introduces a novel perspective on how the 
venomous components of scorpions may be influenced by 
microbial processes.

2.3.3 � Myriapoda: Chilopoda (centipedes)

The first pair of centipede legs are modified into powerful 
venomous claws, known as forcipules, which serve as spe-
cialized tools for injecting venom into prey and adversaries, 
portraying evolutionary innovation for successful predation. 
Centipede venom glands and forcipules, characterized by a 
glandular epithelium surrounding the porous proximal part 
of the venom duct, suggests a regulated secretion process, 
with muscular control implicated in venom release and 
electron-dense granules formed in secretory cells preceding 
venom production (Dugon 2015). Centipede venom, con-
taining diverse disulfide-constrained peptides with unique 
pharmacological effects on neuronal targets and anti-throm-
botic properties, presents promising avenues for discovering 
drugs that address conditions such as ion channel dysfunc-
tion and thrombosis (Undheim et al. 2016). Based on these 
observations, further medically-based investigation into 
centipede biochemistry is warranted.

Centipede venoms are of evolutionary interest as there 
is substantial evidence that they acquire toxins from 
microbes by horizontal gene transfer (HGT). At least 
five toxin gene families were transferred from bacterial 
and fungal donors into centipede venoms at various times 
during their evolutionary history, including enzymes and 
smaller proteins (Undheim and Jenner 2021). Three of 
these toxin families function as virulence factors in bac-
terial donor taxa, which suggests that HGT can be an 
effective mechanism for the transfer of bacterial weapons 
into animal hosts.

Although the extent to which HGT has contributed 
to venom evolution in centipedes is exceptional, a range 
of microbial donors, including bacteria and fungi, have 
transferred venom components to other animal taxa as 
well, including cnidarians, arachnids, hymenopterans, and 
lepidopterans (Huang et al. 2021; Undheim and Jenner 
2021; Walker et al. 2023). Given the repeated acquisition 
of venom components, profiling the microbiota of venom 
systems may produce insights into their role as possible 
reservoirs for innovations in venom evolution. To date, no 
microbial studies of the venom system of centipedes have 
been published.
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2.3.4 � Hexapoda: Insecta: Hymenoptera (ants, wasps 
and bees)

Hymenopterans are a large and diverse group of insects 
with over 150,000 species, comprising bees, wasps, and 
ants (Peters et al. 2017). These insects are infamous for 
their stings, which are the result of a specialization of 
the outer reproductive apparatus of females into a pierc-
ing projection, enabling the injection of secreted tox-
ins into aggressors and prey. Anatomically, the venom 
apparatus of hymenopterans is composed of different 
interconnected secretory glands and tissues derived from 
female reproductive accessory glands, primarily repre-
sented by the Dufour’s gland (aka “alkaline gland”), the 
venom gland (aka “acid gland”) and the venom reser-
voir (Bridges and Owen 1984). In some wasp lineages, 
secretions deriving from the ovaries’ common oviduct 
(termed “calyx f luid”) may also contain toxins and 
venom-adjuvant factors, including symbiotic viruses 
and virus-like particles (Dicke et al. 2020; Salvia et al. 
2023). Hence, the diverse glands and secretory tissues 
from which hymenopteran insect venom components are 
derived provide a unique opportunity for host-associated 
viruses and microbes.

Microbes have been reported from the venom glands 
of few hymenopterans, potentially affecting the function 
of their venom toxins (Fig. 1). A first report of a fungus 
infecting the venom apparatus of a wasp (Lebeck 1989) 
came from Comperia merceti (Hymenoptera: Encyr-
tidae) which is a gregarious parasitoid of the brown-
banded cockroach Supella longipalpa (Blattaria: Blat-
tellidae) ootheca. The wasp injects a yeast (suspected 
Candida sp., Deuteromycotina) into its host during ovi-
position and it is believed to participate in parasitism 
by disrupting the host’s development (Lebeck 1989). 
This yeast infection is not limited to the wasp venom 
apparatus, as it has been observed in various organs 
throughout the wasp life stages, being most prevalent 
in the male's hemolymph. Inside the venom glands, the 
yeasts were observed in large numbers embedded within 
the wall of the venom reservoir, inside a capsular cell 
wall, and their presence in other regions of the venom 
apparatus could not be discarded (Lebeck 1989). The 
yeast is injected into the cockroach egg along with the 
parasitoid eggs, and was previously believed to par-
ticipate in host’s tissue digestion favoring the nutri-
tion of the parasitic larvae (LeBeck 1989), however 
this assumption was not supported by later experimen-
tal evidence (Gibson and Hunter 2009). As it stands, 
the effects of the fungal yeasts within the venom of C. 
merceti parasitoids remains unclear. Similarly, occa-
sional presence of spore-forming Nosema spp. yeasts 
in several tissues of honeybees, including within the 

venom reservoir have been detected (Copley and Jabaji 
2012). Systemic infection by Nosema (also known as 
nosemosis) is considered a serious disease in honeybee 
colonies. This infection has been observed to affect the 
content and diversity of venom proteins, likely due to 
its debilitating effects on infected honeybees (Zaka-
ria and Mohammed 2010). As yeasts detected in the 
venom of these hymenopterans are present in several 
other tissues and not all individuals of the host species 
are infected (i.e. meaning there is no specific mutual-
ism), suggesting that the presence and effects of yeasts 
in hymenopteran venom may not have an adaptive role 
in their venom biology.

Ants are remarkable amongst insects for the chemical 
diversity within their secretions, supported by a number 
of secretory glands (Attygalle and Morgan 1984; Billen 
1991). The venom compositions vary greatly across the 
different ant subfamilies, from mixtures of water-solu-
ble acids with bioactive peptides or toxic oils to alka-
loids (Touchard et al. 2016). The final composition of 
the injected mixture derives from different fluids from 
distinct parts of the venom apparatus, e.g. the Dufour's 
gland, typically produces apolar compounds like terpe-
noids or alkadienes (Mitra 2013) that are administered 
via the stinger. The metabolic pathways underlying the 
biosynthesis of some ant venom toxins has not been 
elucidated, as illustrated by alkaloids that require the 
participation of enzymes yet undescribed from animals, 
thus raising the possibility of microbial involvement 
(Blum and Hermann 1978; Pankewitz and Hilker 2008; 
Fox and Adams 2022). Sequestration of plant second-
ary metabolites has been the suspected origin for some 
species (Fig. 2), while different lineages of Myrmici-
nae ants have also been empirically or experimentally 
demonstrated to produce venom alkaloids belonging to 
structural families including pyridine nicotinoids, terpe-
noids, and piperidine toxins (Touchard et al. 2016; Fox 
and Adams 2022). Venom alkaloids seem to have evolved 
several times during ants’ evolution, and have become 
prominently prevalent among species of the tribe Sole-
nopsidini within Myrmicinae (Jones et al. 1996; Chen 
et al. 2019). As structurally heterogeneous molecules, 
there is no absolute metabolic pathway for producing 
alkaloids, and researchers suspect symbiotic microbes 
may be involved in the biosynthesis of the intermediate 
precursors for many insect alkaloids (Beran et al. 2019). 
In fact, there is experimental evidence suggestive of the 
participation of venom symbionts in the biosynthesis of 
alkaloids, as exemplified by the induced suppression of 
venom alkaloids by feeding ants with antibiotics at sub-
lethal doses as observed in Solenopsis fire ants and in 
Aphaenogaster myrmicine ants (Rojas et al. 2011; Lenoir 
and Devers 2018).
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The only attempt to identify and locate suspected sym-
bionts was documented in a survey for microbes within 
the venom apparatus of two fire ant species – the red 
imported fire ant, Solenopsis invicta, and the tropical 
fire ant, Solenopsis geminata – using high-throughput 
(Illumina) 16S rRNA sequencing of dissected venom 
reservoirs. Subsequent analysis estimated the microbial 
diversity associated with the dissected venom reservoirs 
and found that Pseudomonadota (Proteobacteria) was the 
most abundant phylum identified throughout samples 
from different field sites, followed by Mycoplasmatota 
(Tenericutes) and Bacillota (Firmicutes); most abundant 
genera were Mesoplasma, followed by Exiguobacterium 
and Pseudomonas. These results were similar when 
compared to observations from a distant non-alkaloid-
producing ant, Diacamma rugosum, suggesting that the 
microbial composition associated with venom gland 

reservoirs may correlate with different venom chemis-
tries of distant ant lineages (Yang et al. 2021). No direct 
imaging/detection methods (e.g. light and fluorescence 
microscopy) have been attempted to confirm the pres-
ence of the 16S rRNA sequenced microbiota inside the 
venom reservoir, thus the possibility of contamination 
from the proximate hind gut or abdominal tergite dur-
ing dissections cannot be ruled out (e.g. microbes, being 
widespread, can be present in many structures surround-
ing the venom apparatus, including the stinger (see also 
Supplementary Fig.  1). Moreover, detected microbes 
are commonly present in the guts of insects, including 
fire ants (Yang et al. 2021). Therefore, the presence of 
microbial symbionts within venom apparatuses of ants 
warrants more robust investigation, such as the use of 
fluorescence microscopy markers to confirm the pres-
ence and location of microbes within distinct tissues.

Fig. 2   Venom toxins move through trophic levels by host sequestra-
tion. a) Hemlock plants may produce alkaloids of the piperidines 
class. Hypotheses propose that some insects may ingest the leaves 
containing alkaloids and at least partially incorporate them to their 
venom composition. Animals, such as poison dart frogs, that predate 
these insects can further sequester the toxic alkaloids. The toxin may 
be digested and modified with help from gut bacteria before reach-

ing the skin gland/tissue to be used as poison. b) Bacteria present in 
the water column secrete TTX, which blue ringed octopuses sequester 
and use in their venom cocktails for predating clams and other prey 
items. The figure background was sourced from BioRender, individ-
ual organisms were drawn using Procreate version 5.3.10, and the fig-
ure was assembled in the 2024 version of Adobe Illustrator
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2.3.5 � Hexapoda: Insecta: Neuroptera: Myrmeleontidae 
(antlions)

Antlion larvae, predatory insects known for paralyzing 
their prey with venom, have been the subject of investiga-
tion regarding the origin and composition of their venom. 
Three different paralytic and insecticidal proteins have 
been identified in the venom system of Myrmeleon bore, 
and these were shown to be produced by bacteria (Yoshida 
et al. 2001). Larval venom contains Enterobacter aerogenes, 
which produces a toxic heat-shock protein, GroEL (Yoshida 
et al. 2001). Bacillus cereus was isolated from its esophagus 
and was found to produce the toxin sphingomyelinase C, and 
Bacillus sphaericus was isolated from its crop and found to 
produce the pore-forming protein sphaericolysin (Nishiwaki 
et al. 2004; Nishiwaki et al. 2007a, b; Walker et al. 2018). 
The presence of other bacterial species in the head, crop and 
gut of M. bore and other antlion species brings up questions 
regarding the potential role of microbial symbionts in venom 
production (Dunn and Stabb 2005; Liu et al. 2016). Interest-
ingly, Pantoea bacteria were found in the crop of M. bore 
(Nishiwaki et al. 2007a, b). Pantoea agglomerans has been 
shown to be a gut symbiont in the grasshopper Schistocerca 
gregaria and they produce antimicrobial phenols that confer 
resistance to fungi (Dillon and Charnley 1995). The mecha-
nisms by which these bacteria contribute to venom synthe-
sis, and the extent to which venom components originate 
from the digestive system, remain areas requiring further 
investigation.

2.4 � Chordata

2.4.1 � Vertebrata: Reptilia: Squamata (scaled reptiles)

Squamate reptiles, comprising lizards, snakes, and amphis-
baenians, represent the largest group of terrestrial verte-
brates with over 10,000 described species (Vitt and Caldwell 
2013; Singhal et al. 2021). The evolution of an advanced 
venom delivery apparatus occurred in multiple squamate 
lineages, including helodermatid and anguimorph lizards 
(Koludarov et al. 2017), and nearly 20% of all snake lineages 
(> 200 species) are considered to be medically significant by 
the World Health Organization (Hutson 2010). It has been 
suggested that even lineages lacking an obvious specialized 
delivery apparatus (e.g., varanid lizards) have highly derived 
secretory glands that are specialized to deliver venom toxins 
via mechanical stimulation during biting for either defensive 
or predatory justification, where the physical action of bit-
ing manually stimulates the release and delivery of venom 
(Fry et al. 2006; Koludarov et al. 2017). Further, several 
lineages previously thought to be harmless or unable to 
produce complex toxins have been shown to possess com-
plex toxicological weaponry (Koludarov et al. 2017). Some 

lineages of snakes undergo ontogenetic shifts in their venom 
toxin profiles, related to dietary shifts (Cipriani et al. 2017; 
Schonour et al. 2020), and overall venom toxin complexity 
appears to be related to dietary complexity (Holding et al. 
2021). Dietary complexity may also be related to oral and 
gut-microbiome complexity (Smith et al. 2021), but whether 
this is reflected in other host sites is unexplored.

Advanced snakes, which include highly venomous and 
medically important species such as cobras and pit vipers, 
are the best known and studied venomous reptiles in the 
context of their venom diversity and chemistry. However, 
aside from early studies that sought to identify antimicro-
bial peptides from snake venom glands, bacterial infections 
after snakebite, and a few veterinary studies on reptile oral 
microbiota, few studies have investigated the presence or 
function of microbes in venom-associated glands of ven-
omous reptiles. Nearly all of these studies employed tech-
niques designed to propagate and classify culturable bacteria 
(Dehghani et al. 2016; Ghosh et al. 2018), whereas through 
advances in modern sequencing technologies we now know 
this approach largely fails to detect the major part of the 
diversity of microbial life present in any given sample (Hug 
et al. 2016).

Venoms represent a key adaptation that has played a main 
role in the diversification of venomous animals like snakes 
(Calvete et al. 2007). While there have been some studies 
dedicated to culturing microbes from snake venoms (Gold-
stein et al. 1979), few have used comprehensive sequenc-
ing techniques to describe the snake microbiome in the gut 
(Pulford et al. 2019), mouth (Blaylock 2001), and venom 
(Esmaeilishirazifard et al. 2022). Most research thus far has 
sought to fight bacterial infections after snake bites, which 
might originate from venom, fangs, and saliva of the snake 
(Clark et al. 1993; Garg et al. 2009). Given what we now 
know about the near-ubiquity of vertebrate host-associated 
microbial life with both host external and endogenous tissues 
(Ley et al. 2008; Rosenberg and Zilber-Rosenberg 2018), the 
lack of inquiry using modern methodologies (amplicon and 
shotgun sequencing, FISH, proteomics, metabolomics) into 
the presence and function of microbes in the venom and 
associated glands of squamate reptiles is surprising. By and 
large the most interest garnered regarding microbial inter-
actions with a venomous squamate lineage is that of oral 
bacteria of monitor lizards. Long thought to be the main 
causative agent in monitor lizard-inflicted wounds (Auffen-
berg 1981), oral bacteria (and possibly those from venom) 
were subsequently discounted when both venom glands and 
complex venom-like proteins were identified in multiple 
monitor lizard lineages (Koludarov et al. 2017). Further-
more, a single study utilizing 16S metabarcoding failed to 
find any sepsis-causing bacteria in captive adults or neonate 
monitor lizards (Goldstein et al. 2013). However, we know 
that captivity influences the microbiome of alligators (a 
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non-squamate reptile lineage) (Keenan et al. 2013), iguana 
microbiomes (Eliades et al. 2021), and the prevalence of 
sepsis-causing and pathogenic bacteria in saliva samples of 
wild vs captive komodo dragons (Montgomery et al. 2002). 
Lastly, it has been shown that both external and endogenous 
microbiomes of captive monitor lizards are largely shared 
with those from the environment (Hyde et al. 2016). This 
somewhat polarizing yet exciting shift in the literature focus 
has led to several opposing hypotheses regarding the pur-
pose of microbes (in this case sepsis-causing bacteria) in 
the venom or oral flora of monitor lizards. First is the “bac-
teria as venom” model where bacteria are recruited to aid in 
prey acquisition and defense (Auffenberg 1981), whereas the 
opposing “passive acquisition” model posits that microbes 
present are purely incidental and constrained by the external 
environment (Fry et al. 2009). A third, “lizard epidemic” 
model has been proposed (Bull et al. 2010) where microbes 
are directly transferred between actively feeding lizards, and 
thus are recruited via specific life-history traits and selected 
by the oral and venom environment to aid in prey acquisi-
tion and defense. This latter model is elegant and considers 
the evolution and life history of both host and microbes, and 
should be investigated more broadly when dealing with spe-
cies that have large social interactions, such as co-feeding or 
communal nesting/sleeping.

Harboring a complex and potentially pathogenic oral 
microbiota is not restricted to monitor lizards, with several 
snakes known to possess bacteria capable of causing medi-
cal complications via snakebite (Shek et al. 2009; Lam 
et al. 2011; Krishnankutty et al. 2018). However, these 
studies did not specifically investigate microbes present in 
venom and have largely relied on mouth swabs. Potentially 
pathogenic bacteria such as Escherichia coli, Shigella spp., 
Providencia spp. and Chryseobacterium spp. are often 
found in great abundance in the oral cavities of a diverse 
array of snake species (Shek et al. 2009; Lam et al. 2011; 
Lukač et al. 2017). Recent studies have found that the oral 
and gut microbiomes of sympatric venomous snake spe-
cies reflect host ecology and venom type, and that the gut 
microbiomes of venomous and non-venomous snakes sig-
nificantly differ in bacterial composition (Qin et al. 2019; 
Smith et al. 2021). Future studies on the selective pressures 
driving venom phenotypes should also address the possible 
microbial contributions to venom, as well as the ecology 
of microbes inhabiting the venom apparatus of venomous 
squamates.

Variations in snake venom glands and delivery mecha-
nisms across families provide diverse ecological niches 
for microbes. Front-fanged snakes like Atractaspididae, 
Elapidae, and Viperidae have large glands possibly allow-
ing for great microbial colonization, and hollow fangs for 
high-pressure venom injection (Mackessy 2009). Con-
versely, rear-fanged snakes like Colubridae, Homalopsidae, 

and Lamprophiidae feature smaller glands and lack hollow 
fangs, resulting in slower venom delivery through multiple 
puncture sites possibly facilitating uptake of microbes from 
the victim (Mackessy and Baxter 2006; Mackessy 2009). 
Venomous lizards, such as Helodermatidae (gila monsters 
and bearded lizards) and Anguimorpha genera (Lanthanotus 
and Varanus), possess simple venom delivery systems with 
glands located on the mandible, accompanied by infralabial 
mucus glands. Venom is delivered passively through ducts 
leading to teeth in the lower jaw (Fry et al. 2006; Koludarov 
et al. 2017). During prey subjugation or defensive bites, 
these lizards often employ biting, holding, and head thrash-
ing behaviors, which may facilitate the entry of more venom 
into wounds (Fry et al. 2006; Koludarov et al. 2017). These 
variations in anatomical structures and mechanisms may 
influence the colonization and function of bacteria within 
the venom glands.

Snake venom has been explored as a source of new anti-
microbial compounds and several toxin classes have been 
described as antibacterial (Samy et al. 2012). These anti-
microbial properties have long contributed to the general 
assumption that venom glands and ducts are sterile. How-
ever, little effort has been made to investigate the extremo-
phile microbes that are able to thrive in this hostile envi-
ronment, or their evolutionary responses (i.e. antimicrobial 
compound production) to unique selection pressures pre-
sent in the venom gland/duct system. The longstanding 
dogma that oral secretions and venom microbiomes are 
either derived from prey or are sterile is now being chal-
lenged as the oral and gut microbiome have been shown to 
be independent of prey-associated microbes (Costello et al. 
2010), and non-venomous snakes often have substantially 
lower abundance of microbial inhabitants within their oral 
cavities than venomous snakes (Lam et al. 2011). Further-
more, microbes have been isolated and found to be unique 
to the venom-gland microenvironment of venomous snakes 
(Esmaeilishirazifard et al. 2022). Overall, squamate rep-
tiles that exhibit cooperative feeding present an interesting 
opportunity for colonization and spread of venom, oral, or 
gut microbes between predators, prey, and the environment.

The vast majority of studies on microbes present in 
the oral cavities or venom/saliva of reptiles have focused 
on culture-based techniques rather than sequence-based 
approaches. However, there has been some overlap in the 
findings using either approach, and the majority of bacteria 
identified in the oral cavities of reptiles belong to the phyla 
Pseudomonadota (formerly Proteobacteria), Bacteroidota, 
Bacillota (formerly Firmicutes), Actinomycetota (formerly 
Actinobacteria), and Acidobacteriota, typically in decreasing 
relative abundances (Ghosh et al. 2018). Pseudomonadota, 
Bacteriodota, and Bacillota are the dominant phyla in the 
gut of wild reptiles (Colston and Jackson 2016). However, 
aquatic and marine reptiles often have high abundances of 
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Fusobacteriota (formerly Fusobacteria) and Mycoplasma-
tota (formerly Tenericutes) in both oral and gut samples, 
potentially relating to the environmental influence on the 
microbiome of aquatic reptile hosts (Keenan et al. 2013; 
Smith et al. 2021). Recently, Patescibacteria were identified 
in the oral microbiome of venomous sea snakes (Laticauda 
laticaudata), which have not been previously known to 
occur in reptile guts or oral microbiomes (Smith et al. 2021). 
Chloroflexota (formerly Chloroflexi) are known to inhabit 
the oral cavities of several medically significant elapid snake 
species, including king and Indian cobras (Krishnankutty 
et al. 2018). Many of the bacteria known to inhabit the oral 
cavities of venomous reptiles are potentially pathogenic. The 
most common infections associated with medically signifi-
cant snakebites are attributed to Enterococcus faecalis, and 
a recent study identified two novel strains of the bacteria 
that were unique to the venom gland/delivery system of 
the venomous snake Naja nigricollis (Esmaeilishirazifard 
et al. 2022). Current investigations into reptile oral cavities 
and venom microbiomes have identified prevalent bacterial 
phyla, including potential pathogens, thus further research, 
utilizing advanced sequencing techniques to elucidate the 
diversity, functions, and bioactive properties of these venom 
bacteria-based chemicals, is required to understand the med-
ical impact of the venom microbiome in envenomed patients.

2.4.2 � Underexplored microbes in venom systems

The investigation of the venom microbiome represents a 
burgeoning field within scientific research, primarily focus-
ing on bacterial communities, and even fewer focusing on 
bacterial contributions to venom composition and movement 
through trophic levels. Fungi and Archaea present challenges 
regarding their cultivation and genome studies, leading to a 
bias towards bacterial components in venom microbiome 
research. However, this oversight may withhold information 
as the full spectrum of venom-associated microorganisms 
including parasites, viruses, fungi, and archaea, remains 
inadequately studied. The following sections present unique 
aspects of venom-microbe systems as far as they are cur-
rently understood while addressing areas of each system that 
are in critical need of further study.

2.4.3 � Bacterial synergy in trophic transfer of venom toxins

Investigating the transmission of venom toxins across 
trophic levels presents a novel research area for understand-
ing how bacteria contribute to venom and poison composi-
tion in various organisms. Myrmicine ants, mites, and bee-
tles produce toxic alkaloid-rich poisons and venoms. When 
ingested by anurans such as dendrobatid and mantelline 
frogs and bufonid toads, the alkaloids present in these poi-
sons and venoms may become sequestered within the frog's 

cells (Jones et al. 1999; Valderrama-Vernaza et al. 2009). 
These amphibians can, thus, utilize ant, mite, and beetle prey 
alkaloids for chemical defense against predation, facilitated 
by cutaneous mucous glands and serous glands aiding in 
alkaloid sequestration (Darst et al. 2005). The process is 
likely facilitated by gut bacteria, though the mechanisms are 
unknown, warranting further research (Fig. 2).

Exploring the movement of venom components through 
trophic levels helps us understand host-microbe dynamics 
impacting chemical defense, offering potential biomedical 
data for drug development. Toxins are often initially dis-
covered in animals and later found in bacteria, with poten-
tial for purification and synthesis for pharmaceutical use. 
Microsymbionts contributing to venom toxin sequestration 
may reveal key ecological dynamics, informing how bacteria 
influence animal chemical defense strategies. Batrachotoxin 
(BTX), a medically significant natural toxin, likely origi-
nates from plant metabolites ingested by Melyridae beetles 
and oribatid mites, undergoing structural modification by 
arthropod gut microsymbionts (Daly et al. 1994; Dumbacher 
et al. 2004; Saporito et al. 2007). BTX is also found in the 
skin and feathers of some birds such as the Pitohui, which 
also feed on toxic beetles (Dumbacher et al. 2004). Further 
investigation of the functional attributes of microbes in toxin 
modification or chemical synthesis in this system are needed 
to understand putative biochemical pathways or novel bioac-
tive compounds applicable in medicine.

Similar to BTX, the alkaloid tetrodotoxin (TTX) is 
a potent sodium channel neurotoxin (Bane et al. 2014). 
Some caudatans (newts and salamanders), and various 
phylogenetically diverse marine animals secrete or inject 
TTX as a defense, while other animals use the toxin for 
predation (Chau et al. 2011). In some marine animals 
the source of TTX is direct dietary accumulation from 
environmental bacteria containing TTX (Chau et  al. 
2011). In contrast, the production of TTX in newts is 
uncertain, and the synthesis mechanisms, whether inter-
nally regulated or facilitated by bacterial symbionts, 
remain unclear, as bacteria within the skin microbiome 
of toxic newts can produce TTX (Vaelli et al. 2020). 
Unlike anurans, which are known to sequester toxins 
directly from venomous prey, caudatans are likely to 
sequester TTX from environmental bacteria associated 
with diet in the same way that marine animals do. In 
fact, many of the TTX-producing bacterial strains iso-
lated from the skins of newts are from the same genera 
as those identified in marine animals. For many marine 
animals, the toxin is known to be produced by symbi-
otic bacteria, which may be a possible reason why so 
many different animals can utilize TTX (Vaelli et al. 
2020). Blue-ringed octopuses (genus Hapalochlaena) 
sequester TTX from marine bacteria (Whitelaw et al. 
2019). The venom glands in octopuses are connected 
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to the salivary papillae, near the beak or mouth of the 
octopus, and they assist in delivering venom to subdue 
prey or deter potential threats (Fig. 2). These animals 
have developed selective uptake mechanisms, poten-
tially involving specialized transport proteins to con-
centrate and store TTX in the venom glands. The molec-
ular mechanisms of bacterial TTX production and the 
mechanisms of uptake and storage are ongoing areas of 
research. Sequestration of TTX and/or TTX-producing 
bacteria requires protection against the toxin for the host 
as the molecular target of TTX, voltage gated sodium 
channels, is fundamental to life processes throughout 
the animal kingdom. Target site resistance via voltage 
gated sodium channel mutations have been considered 
to be standard for TTX resistance, having been detected 
in TTX utilizing species such as Hapalochlaena spp. 
(Geffeney et al. 2019). New research is also investigat-
ing the origin and role of soluble toxin-binding proteins 
in these toxin pathways. For instance, the discovery of 
saxiphilin, a saxitoxin-binding protein isolated from 
frogs and toads challenges previous ideas about how 
these animals resist their own toxins and suggests that 
sequestration mechanisms could be important for protec-
tion (Abderemane-Ali et al. 2021). Both the diversity of 
animals in which TTX has been found and the means of 
obtaining, sequestering, producing, secreting, or inject-
ing the chemical raise questions about the mechanisms 
by which this toxin can travel through trophic levels 
from bacteria to predator to prey, and the likelihood of 
environmental and gut bacteria mediating the chemical's 
ability to traverse environments and hosts.

2.4.4 � Parasites and additional micro‑eukaryotes

The diverse relationships between venomous animals and 
eukaryotic parasites in the venom environment remain 
underexplored, but interactions between venoms and vari-
ous parasitic organisms are known to exist. Venomous ani-
mals may use their venom defensively against parasites, and 
in some cases, parasites can modulate venom production, 
affecting the defensive behaviors of venomous organisms.

Parasites, spanning a diverse range of taxa including 
Arthropoda, Nematoda, Platyhelminthes, and Protozoa 
among others constitute ubiquitous selective pressure on 
host populations (Poulin and Morand 2000). Given the small 
points of entry into venom glands, infection by metazoan 
parasites in the venom environment seems unlikely, though 
single-celled eukaryotic parasites (protists) could potentially 
reside in the venom microenvironment if they are able to 
survive. However, it is more likely that venomous animals 
are trying to defend themselves against parasites, rather than 
coevolve with or symbiotically recruit parasites like they do 
with bacteria and viruses. Slow lorises generate their venom 

through a combination of specialized brachial glands located 
inside their elbows and salivary glands (Nekaris et al. 2013). 
The branchial glands secrete a toxic compound, which the 
slow loris transfers to its mouth by licking. There it is com-
bined with toxic saliva, with the slow loris envenomating 
victims through its bite, using the venom to immobilize 
potential prey or threats (Gardiner et al. 2018). The venom 
from two slow loris species, Nycticebus javanicus and Nyc-
ticebus coucang, exhibits ectoparasite repellent properties, 
impairing and often causing the death of various arthro-
pods (Grow et al. 2015). This suggests its potential role in 
repelling parasites, particularly ectoparasites like ticks. In 
another example, nematode parasites interfere with Lasius 
ant venom production, resulting in a reduction of defensive 
behaviors (Yanoviak et al. 2008). Some parasites, including 
certain helminths, produce molecules with venom toxin-like 
properties (Dzik 2006). These molecules are often involved 
in interactions with the host's immune system and can modu-
late immune responses (Dzik 2006). While these parasite 
proteins share some characteristics with venom compo-
nents, they are typically referred to as immunomodulatory 
or immunoregulatory proteins rather than traditional venom 
(Goodswen et al. 2022).

2.4.5 � Viruses

Venom glands may support replication of some viruses or 
virus-like entities (Asgari and Rivers 2011). When tak-
ing into consideration the high rates of replication and the 
high mutation rates during the replication process and the 
behavior of viruses as quasispecies, especially those with 
RNA genomes, it is not surprising to find a high diversity 
of viruses in venom glands (Sanjuán 2010; Domingo et al. 
2012). The first study on the virome of venom glands in a 
venomous animal, the Golden Orb-Weaver spider, Nephila 
clavipes, showed four new RNA viruses that were discov-
ered to exist exclusively in the venom glands (Debat 2017).

Numerous investigations revealed a diverse range of 
viruses and virus-like particles (VLPs) in the venom glands 
of various venomous animals (Morales et al. 2005; Asgari 
and Rivers 2011; Gueguen et al. 2011; Gatti et al. 2012; 
Debat 2017). A recent study suggested that the accumula-
tion of viral RNA in venom glands might contribute to 
virus HGT (Debat 2017). These events are not dissimi-
lar to prokaryotic adaptation at the genome level driven 
by phage systems, and the significance of this in the fight 
against antimicrobial resistance, let alone venom biology, 
has yet to be assessed (Weinbauer and Rassoulzadegan 
2004). In parallel, endoparasitoid wasp venom-associated 
viral components present additional physiological roles, 
as VLPs injected by the parasitoid wasp Leptopilina het-
erotoma (Hymenoptera: Cynipidae) during the process of 
endoparasitism have been reported to destroy the cellular 
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immunity of Drosophila melanogaster—an early indica-
tion of coevolutionary significance for venom viromes that 
might extend beyond wasps into other envenomating spe-
cies (Rizki et al. 1990). Future research should attempt 
to determine the roles of these viral components, their 
coevolutionary relevance, and their broader implications 
for advancing our understanding of venom biology and 
therapeutic interventions.

3 � Methods and approaches 
to understanding venom microbiomes

Investigating the host–pathogen dynamics and co-evolution-
ary mechanisms within venom microbiomes necessitates 
precise methodologies to mitigate contamination risks and 
decipher the complex microbial interactions within venom-
ous organisms (Table 1). Microbiome studies require techni-
cal expertise and careful planning and controls, as sample 
contamination can easily occur during initial processing. 
This is central to the context of venom microbiomes, as any 
organisms identified, for instance by NGS, could potentially 
originate from other sources within the original collection, 
or dissection tools, buffers, or other anatomical structures/
organs encountered during micro-dissections of small 
arthropods.

Microbes identified from milked snake or spider ven-
oms might have been associated with the fangs, either 
externally or at the exit ducts. Microbes found in ant 
venom samples might have been associated with the 
stinger or even the hindgut, considering the proximity of 
the stinger tip to the cloaca. During dissections, microbe-
rich adjacent tissues could easily impregnate collected 
venom apparatuses, potentially leading to erroneous sub-
sequent conclusions. Cross-contamination during library 
preparation can also occur, specifically through PCR 
cycles resulting in tag-switches and chimeric sequences 
leading to distorted diversity measurements; a solution 
involves implementing modified library preparation 
protocols, strategic sample labeling, and utilizing infor-
mation from both samples and negative controls (Foun-
tain-Jones et al. 2023). Exploring the integration of site-
occupancy modeling in venom microbiome studies could 
enhance the quantification of measurement uncertainty, 
address imperfect detection issues, and provide a basis 
for robust statistical predictions by incorporating both 
biological and technical PCR replicates, thus improving 
study design and confidence in biodiversity assessments 
(Fountain-Jones et al. 2023).

Transcriptomic methods can be applied to discover 
differences or similarities in the microbial composition 
and function of microbes residing within venom glands 
by analyzing the RNA transcripts of the microbial genes. Ta
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This involves extracting RNA from the venom glands, 
converting it to complementary DNA (cDNA), and then 
using high-throughput sequencing techniques. The result-
ing data would provide information about the active 
genes and metabolic pathways of the microbes present 
in the venom glands, allowing researchers to compare 
the microbial profiles between different species and 
understand their potential roles in venom production or 
other physiological processes. However, in transcriptome 
analyses, there are major obstacles which are intrinsic to 
venom research, not often mentioned by published litera-
ture (an overview of RNA-Seq is given in Wu 2018). For 
instance, the typical venom transcriptome manuscript will 
qualitatively describe the diversity and characteristics of 
assembled transcripts recovered from RNA (either total 
or enriched in mRNA) isolated from a pool of venom 
apparatuses dissected off their model organism. Accurate 
and clean dissections are imperative to avoid the inclusion 
of other tissues like tracheae, muscles, venom reservoirs, 
and mitochondria in the analysis, as each carries specific 
transcripts. Downstream in the analysis, there is currently 
no established approach to reliably sort between venom-
associated transcripts and unrelated transcripts, where 
the latter usually represents a major part of the observed 
diversity (Baek et al. 2013).

Metabolomics as applied to venomics has been more 
frequently applied to vertebrate venom analysis, however 
invertebrate studies have also increased in frequency, for 
instance with scorpions (Hu et al. 2011), spiders (Schroeder 
et al. 2008), and ants (Fox et al. 2018). In principle, interdis-
ciplinary collaboration and unrestricted access to raw data 
are essential for producing invaluable results and conclu-
sions. A main challenge still exists in the proper identifi-
cation of compounds obtained through mass spectrometry, 
although emerging databases and analysis platforms such 
as the Global Natural Product Social Molecular Network-
ing (GNPS) (Wang et al. 2016) and VenoMS (Forster et al. 
2020) are facilitating identifying and tracing structural rela-
tionships between metabolites. Thus, integrating genomics, 
transcriptomics and proteomics results with metabolomics 
relies on interdisciplinary collaboration, which can then help 
to build a more comprehensive understanding of the multi-
layered, complex biochemical interactions between microbes 
and venomous hosts.

4 � Conclusions and future directions

This review predominantly focuses on venomous 
organisms, emphasizing venom diversity and integrat-
ing microbiomic analyses to enhance understanding of 
venom composition, ecological interactions, and micro-
bial symbionts. The composition and functionality of 

venom-associated microbiomes exhibit remarkable diver-
sity, contributing to the unique characteristics of venoms. 
The examples provided in this review highlight the bur-
geoning understanding of connections between microbes 
and venomous animals, suggesting that microbial com-
munities may contribute to shaping venom composition 
and function.

The emerging field of ecological venomics (genomics, 
transcriptomics, metabolomics, and proteomics) is begin-
ning to show that ecological processes are influencing 
venom composition and diversity. Drawing parallels, as 
environmental stressors can impact our gut microbiome, 
similar ecological processes likely influence venom-asso-
ciated microbial communities. In both cases, external fac-
tors influence biological compositions: venoms adapt to 
prey and habitat, while microbial assemblages can reflect 
environmental stressors such as changes in pH or temper-
ature. Progress in both basic research and technological 
advancements are required for fully understanding venom 
microbiomes. Techniques such as metagenomics, prot-
eomics, and comparative transcriptomics have undergone 
substantial enhancements, offering deep insight into the 
relationships between toxins and microbes within venom 
glands, organs, or ducts. Moreover, tissue or cell-specific 
sequencing, particularly in eukaryotic organisms, may 
reveal complex dynamics within venomous systems. A 
notable example is the cultivation of ant venom glands 
and their associated microbiota, which holds poten-
tial to enhance our understanding of the interdepend-
ence between venomous organisms and their microbial 
symbionts.

The microbiomes associated with the venom systems 
of hematophagous animals, including leeches, ticks, mos-
quitoes, and others, deserve dedicated inquiry and discus-
sion due to their potential role in disease transmission and 
host adaptation. These animals serve as vectors for serious 
diseases like malaria and Lyme disease, with their venoms 
providing attractive environments for microbial coloniza-
tion. However, the impact of venom-associated microbes 
on human and veterinary health remains poorly understood, 
necessitating further research to assess their contribution to 
envenomation pathology. The ecological and evolutionary 
pressures governing the nature of microbiomes in blood-
feeding and predatory venom glands could differ signifi-
cantly, and in important ways, presenting a need for focused 
investigation into this area of venomous host-microbe evolu-
tion and adaptation.

The role of viruses such as bacteriophages, which can 
influence the abundance of bacterial populations should 
be recognized in brief. Consideration of viruses' involve-
ment in the biology and maintenance of ecological niches, 
such as venom and poison glands, where microbial com-
munities are diverse, is not unwarranted. By forming the 
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foundation for future research in unifying environmental 
biology, host ecology, microbial ecology, and processes 
of venom action and delivery involving diverse microbial 
taxa, we establish a systematic framework to understand 
the diversity and roles of venom-associated microbiomes, 
possibly culminating in the discovery of compounds for 
pharmaceutical use. The venom-associated microbiome 
could have a significant impact on studies of venoms as 
therapeutics, biopesticides or other applied research where 
whole venom is used as a starting point. There are many 
published studies on venom activity that have used whole 
venom where the contribution of the venom-associated 
microbiome is unknown. In the majority of these studies 
the venoms are lyophilised which has been shown to greatly 
reduce bacterial viability, whereas work with fractionated 
venoms will not contain viable microbes but could contain 
microbial metabolites. The symbiosis of venom-associated 
microbes and their hosts represents an evolutionary arms 
race within the venom gland environment, the products of 
which can be used for novel drug discovery.

In the current scientific context, there is a growing 
emphasis on the study of biological relationships through 
a multisectoral and transdisciplinary approach that 
acknowledges the interconnectedness of human health, 
animal health, and environmental health. The integration 
of open-source research platforms like iNaturalist (www.​
inatu​ralist.​org), GNPS (www.​gnps.​ucsd.​edu), Wikidata 
(www.​wikid​ata.​org), Vertnet (www.​vertn​et.​org), and the 
Global Biodiversity Information Facility (www.​gbif.​org) 
can facilitate collaborative efforts in elucidating the rela-
tionships between microbes and venomous animals. Con-
structing a comprehensive network that establishes con-
nections between disciplines is an ongoing challenge that 
requires innovative strategies. This involves a multi-dis-
ciplinary approach that encompasses fields ranging from 
microbiology to computational biology. The ultimate 
objective of iVAMP is to create a comprehensive under-
standing of host metadata and the interactions of microor-
ganisms within venom. This information may be extrapo-
lated to enhance a broader comprehension of biological 
phenomena encompassing ecological, evolutionary, and 
health-related subjects. In the field of venom microbiome 
research, it is imperative to prioritize meaningful engage-
ment with local communities, fostering mutual dialogue 
between scientists and the community, promoting col-
laborative fieldwork initiatives, and ensuring diverse 
representation within the scientific community (Ramírez-
Castañeda et al. 2022). Meaningful engagement with local 
communities in venom microbiome research acknowl-
edges the valuable traditional knowledge they possess, 
fostering a more comprehensive and inclusive approach 
to understanding venomous organisms. This also aids 
compliance with international laws on bioprospecting 

such as The Nagoya Protocol on access and benefit shar-
ing. Through a practical and inclusive approach, iVAMP 
advocates for the direct involvement of local community 
members across various research stages, encompassing 
project initiation, data collection, and result interpreta-
tion. This collaborative strategy respects and values the 
traditional knowledge of local communities, and leads 
to advancements in the exploration of venom microbi-
omes. This approach aligns with the overarching goals 
of a unified microbiome initiative (UMI), which seeks 
to comprehensively explore Earth's microbial ecosystems 
for scientific discovery and practical applications (Alivi-
satos et al. 2015). Due to the limited understanding of 
microbial interactions, UMI advocates for the exploration 
and utilization of Earth's microbial ecosystems to drive 
innovation across various fields. Similar to the iVAMP 
initiative, UMI underscores the importance of microbi-
omes in addressing challenges related to climate change, 
agriculture, biofuels, human health, and drug discovery. 
It promotes the rational management of microbial com-
munities for disease prevention, treatment, and precision 
medicine.

The existing literature on venom microbiomes exhib-
its biases, with significant gaps in knowledge regarding 
environmental sampling sites, host species representation, 
and microbial diversity, resulting in disparities in the rep-
resentation of these factors. To comprehensively under-
stand venom microbiomes, future research should extend 
beyond bacteria and consider the presence and roles of 
viruses, fungi and archaea in these microbiomes. The study 
of venom microbiomes involves investigating evolution-
ary relationships between organisms and their microbial 
associates, providing a more holistic perspective on the 
dynamics shaping venom composition and function. Fungi 
and archaea are not as extensively studied as bacteria in 
venom microbiomes because the methodologies for study-
ing bacteria are more well-established, allowing for easier 
isolation and characterization. As techniques for studying 
these less explored microbial groups improve, it becomes 
increasingly important to address this bias and investigate 
the diverse roles of fungi and archaea in venom ecosys-
tems. The diversity in venomous adaptations, the influ-
ence of extreme environments, the metabolic costs associ-
ated with venom production, and the potential synergies 
between technological advancements and basic research 
are important for future investigations involving venom 
microbiomes. While progress has been made to infer bacte-
rial contributions to venom composition, our understanding 
of the underlying mechanisms remains limited. Much more 
research is needed to explore the possible roles of microbes 
in venom composition and evolution. Additional research 
will also elucidate how venoms and microbiomes interact 
and influence each other.

http://www.inaturalist.org
http://www.inaturalist.org
http://www.gnps.ucsd.edu
http://www.wikidata.org
http://www.vertnet.org
http://www.gbif.org
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